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1 Introduction

Live-Scripting is an approach to combine work in IT projects, documenta-
tion and information retrieval.
Very much like test-driven development combines testing and coding, live-
scripting documents work in command shells, while doing it.

Figure 1: Live-Scripting Session in Emacs.

1.1 The Problem

Since more than 30 years, and even now, IT-work in many case is command
shell centric. For many IP professionals the bash or other shells constitute a
major part of there work. Sophisticated commands are constructed during
problem resolution. Normally these commands are deleted at the end of a
session. When similar problems arise days or weeks later, similar analysis
and solutions steps are repeated again. If documentation of the work is re-
quired, it is an extra time consuming task. We wish to document this work
in an easy way for ourselves and others. This should include an e�ective
search method to quickly �nd documented information.
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1.2 The live-scripting approach

Live-scripting is a work methodology based on emacs, which documents work
on the command shell while doing it. Instead of entering and executing one
command at a time, in live-scripting we use two windows side by side: An
editor and a shell. The commands in the editor can then be executed with
a single key shortcut in the adjacent shell. This is similar to a debugging
session where we can step through code during execution. In the emacs ed-
itor we can jump between commands, repeat them in any order, duplicate
and modify them. The editor is saved into a text �le at the end of the session.

1.3 Emacs org-mode

Emacs is the ideal tool for it. The ansi-term provides for a robust shell
interface within emacs. Since it is an programmable environment the func-
tions to send a line of code to the ansi-term can be added. Furthermore the
org-mode module is an emacs killer app on its own, adding many features
to organize, format and publish the work. At it's core, org-mode is a mark-
up language similar to markdown, put much more powerful. Emacs provides
elaborated search capabilities across �les and projects. The magit module
is a highly praised interface to git. The fact that most �les are plain text in-
vites the storage in a source code control system like git. But org-mode can
also handle pictures to add screenshots and attachments for �le types like
PDFs and others. org-mode together with a couple of other emacs modules
constitute a cross-media publishing machine which makes it easy to export
to HTML, PDF, Markdown, Con�uence, and more.

1.4 Multi Project Website

Live-scripting, as it is presented here, is a con�guration that spans multi-
ple projects and publishes the org-�les and attachments to a single static
website. This can be used locally or be synchronized to a web server in an
intranet or on the internet. The web site contains a search pages for the
whole site based on lunr, which provides a full text search index to �nd
information across di�erent pages and projects.

4



2 Installation on lubuntu

The installation is performed on Lubuntu. Lubunut is lightweight and there-
fore suitable for virtual machines and cloud environments.

2.1 Prerequisites

A Linux with a graphical interface and a GNU Emacs installation is required
to use live scripting.
In this example we use Lubuntu 19.10 and GNU Emacs 26.3.

sudo sed -i -e 's|disco|eoan|g' /etc/apt/sources.list

sudo apt update

sudo apt upgrade

### New Release

lubuntu@lubuntu-pc:~$ lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 19.10

Release: 19.10

Codename: eoan

### Install emacs

lubuntu@lubuntu-pc:~$ sudo snap install emacs --classic

2020-06-19T09:39:50+02:00 INFO Waiting for restart...

emacs 26.3 from Alex Murray (alexmurray) installed

### Clone project live-scripting

mkdir org; cd org

git clone https://github.com/andreaswittmann/live-scripting.git

Figure 2: This listing shows the Lubuntu upgrade from 19.04 to 19.10 and
the Emacs installation.

This creates the prerequisites for live-scripting.
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2.2 Basic Live-Scripting

In the base con�guration the GNU Emacs installation is adapted to execute
shell commands from an orgmode �le.
I use the init.el from this project

### Copy init.el to emacs

cp ~/org/live-scripting/init.el ~/.emacs.d/

### Restart emacs

We now open two windows side by side in emacs. In the right one we
execute an ansi-term.
In the left window we execute shell commands from an orgmode �le.

M-x 3 Open two windows
C-x o other-window
M-x ansi-term Open ansi-term
C-x 0 other-window
F5 Send command and step one line further.

Now shell commands can be executed directly. The code block is only
for formatting.

### example execution of shell commands with live-scripting

ls -la

date

whoami

pwd

2.3 Spacemacs con�guration

Emacs con�guration is very time consuming. With the Spacemacs project
you get a very extensively con�gured Emacs.
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2.3.1 Installation

Spacemacs is cloned from GitHub. Before doing so, I backup the destination
directory so that it is not overwritten. The old init.el is no longer used.

### move emacs directory, to save it

mv ~/.emacs.d ~/_emacs.d

mkdir ~/.emacs.d

cd ~/.emacs.d

ls -la

### Install spacemacs

git clone https://github.com/syl20bnr/spacemacs ~/.emacs.d

Emacs will now restart. The Spacemacs start dialog follows.
I choose the following options:

� Editing Style: emacs

� Distribution: standard

� Completion Framework: helmet

I edit ~/.spacemacs to use the following layers:

;; List of configuration layers to load.

dotspacemacs-configuration-layers

'(

;; ----------------------------------------------------------------

;; Example of useful layers you may want to use right away.

;; Uncomment some layer names and press <SPC f e R> (Vim style) or

;; <M-m f e R> (Emacs style) to install them.

;; ----------------------------------------------------------------

helm

auto-completion

;; better-defaults

emacs-lisp
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git

markdown

org

(shell :variables

shell-default-height 30

shell-default-position 'bottom)

spell-checking

;; syntax-checking

version-control

themes-megapack

)

;; List of additional packages that will be installed without being

;; wrapped in a layer. If you need some configuration for these

;; packages, then consider creating a layer. You can also put the

;; configuration in `dotspacemacs/user-config'.

dotspacemacs-additional-packages

'(

minimap

sr-speedbar

;;;; Org

org-beautify-theme

)

Emacs has to be restarted several times until it initializes without errors.

I want the .spacemacs �le to become part of the project. It will be linked
from the user directory.

cd ~

mv .spacemacs org/live-scripting/

ln -s ~/org/live-scripting/.spacemacs ~/.spacecmacs

2.3.2 Con�guring the Default Theme.

To do this you have to edit the variable dotspacemacs-themes in the .spacemacs
�le.

8



;; List of themes, the first of the list is loaded when spacemacs starts.

;; Press <SPC> T n to cycle to the next theme in the list (works great

;; with 2 themes variants, one dark and one light)

dotspacemacs-themes '(leuven

tangotango

spacemacs-dark

spacemacs-light)

2.3.3 Send to ansi-term

The old inti.el was replaced by the .spacemacs. I have to make necessary
changes here to control the ansi-term.
For this purpose the function dotspacemacs/user-con�g is extended.

;;;; Send region and line to ansi-term

;; https://emacs.stackexchange.com/questions/28122/how-to-execute-shell-command-from-editor-window/28126#28126

(defun send-region-to-ansi ()

"If region active, send it to ansi-term buffer."

(interactive)

(if (region-active-p)

(send-region "*ansi-term*" (region-beginning) (region-end))))

;; Meine Erweiterungum Lines zu senden

(defun my-select-current-line ()

"Selects the current line, including the NEXT-LINE char at the end"

(interactive)

(move-beginning-of-line nil)

(set-mark-command nil)

(move-end-of-line 2)

(move-beginning-of-line nil)

(setq deactivate-mark nil))

(defun send-line-to-ansi ()

"If region active, send it to ansi-term buffer."

(interactive)

(my-select-current-line)

(if (region-active-p)

(send-region "*ansi-term*" (region-beginning) (region-end)))
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(deactivate-mark 1))

;; das funktioniert sehr gut. Binden auf F8

(global-set-key [f5] 'send-line-to-ansi)

(global-set-key [f6] 'send-region-to-ansi)

(global-set-key [f7] 'other-window)

(global-set-key (kbd "C-n") 'other-window)

;; In ansi-term toggle between char run/line run mode.

;;http://joelmccracken.github.io/entries/switching-between-term-mode-and-line-mode-in-emacs-term/

(defun jnm/term-toggle-mode ()

"Toggles term between line mode and char mode"

(interactive)

(if (term-in-line-mode)

(term-char-mode)

(term-line-mode)))

(global-set-key [f8] 'jnm/term-toggle-mode)

;; Moving Lines, from http://emacsredux.com/blog/2013/04/02/move-current-line-up-or-down/

;; Transpose function for lines

(defun move-line-up ()

"Move up the current line."

(interactive)

(transpose-lines 1)

(forward-line -2)

(indent-according-to-mode))

(defun move-line-down ()

"Move down the current line."

(interactive)

(forward-line 1)

(transpose-lines 1)

(forward-line -1)

(indent-according-to-mode))

;; Diese Kürzel kollidieren nicht mit org-mode

(define-key input-decode-map "\e[1;5A" [C-up])

(define-key input-decode-map "\e[1;5B" [C-down])
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(global-set-key [(C-up)] 'move-line-up)

(global-set-key [(C-down)] 'move-line-down)

Now commands can be executed directly in an ansi-term.
Test:

F5 send line to ansi-term
F6 send region to ansi-term
F7 othe window (C-x o)
F8 toggle char run/line run mode

ls -la

pwd

whoami

date

2.3.4 Con�gure Flyspell.

Flyspell already works. I want to switch the dictionary to German.
For this purpose it must be installed �rst. In Ubuntu this is done via the
package manager.
But I would rather use hunspell and install it together with the dictionary.
Hints for dictionaries can be found at Ubuntu: https://wiki.ubuntuusers.de/Rechtschreibkorrektur/#Woerterb%C3%BCcher

### load aspell Dictionary

sudo apt-get install aspell-en

### Install Hunspell.

sudo apt-get install hunspell

sudo apt-get install hunspell-en

sudo apt-get install hunspell-en-en-frami

which hunspell # /usr/bin/hunspell

M-x ispell-change-dictionray select german.
M-x customize-variablebe ispell-dictionary Select sting and enter english.
M-x customize-variablebe ispell-program-name entry: /usr/bin/hunspell
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Test: Which program is used?
The entry is in the message bu�er:

Starting new Ispell process /usr/bin/hunspell with deutsch dictionary...

Saving file /home/lubuntu/org/live-scripting/.spacemacs...

2.3.5 Magit Authentication ATTACH

I want to be able to write from Magit to Github without having to enter the
password again.
This can be done with SSH keys in three steps.

� 1. create SSH key pair.

� 2. Create ssh con�g �le.

� 3. register public key in GitHub.

### Check for keys.

cd ~

ls -la .ssh

### Generate key

mkdir .ssh

cd ~/.ssh

ssh-keygen -t rsa -b 4096 -C "lubuntu.mac@live-scripting.de"

id_rsa_github

# Empty Passpharse 2x RET

ls -la

## create config file

cat << EOF > ~/.ssh/config

Host github.com

IdentitiesOnly yes

IdentityFile ~/.ssh/id_rsa_github
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EOF

cat ~/.ssh/config

### Copy the public Key to github via web gui

cat ~/.ssh/id_rsa_github.pub

### Prepare projects

cat ~/.ssh/id_rsa_github.pub

cd ~/org/live-scripting

git remote set-url origin ssh://git@github.com/andreaswittmann/live-scripting

git remote -v

cd ~/org/aw-org-html-themes

git remote set-url origin ssh://git@github.com/andreaswittmann/aw-org-html-themes

git remote -v

git push

cd /var/www/html/orgweb/

git remote -v

git remote set-url origin ssh://git@github.com/andreaswittmann/orgweb

### Check git operations

git pull -v

git push -v

The following �gure shows how to add the public key to the GitHub
project in order to access it with SSH.

2.3.6 Con�guration of org-download ATTACH

org-download is an Emacs package which allows to add images to an org �le
by drag and drop.
GitHub: https://github.com/abo-abo/org-download

Org-Download o�ers two methods for saving the �les. I want to use the
Org-Attachment mechanism.
For this purpose the variable org-download-method has to be adapted via
customization.
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Figure 3: Add public key to GitHub project.
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2.3.7 Install Adobe Font Source Code Pro

This is the default font for Spacemacs.
There is a manual available at: https://gist.github.com/enzinier/8d00d3f37d2e23985dcfa65662d163fa

#!/bin/sh

# Userland mode (~$USER/), (~/).

# ~/.fonts is now deprecated and that

#FONT_HOME=~/.fonts

# ~/.local/share/fonts should be used instead

cd

FONT_HOME=~/.local/share/fonts

echo "installing fonts at $PWD to $FONT_HOME"

#mkdir -p "$FONT_HOME/adobe-fonts/source-code-pro"

f

ind "$FONT_HOME" -iname '*.ttf' -exec echo '{}' \;
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(git clone \

--branch release \

--depth 1 \

'https://github.com/adobe-fonts/source-code-pro.git' \

"$FONT_HOME/adobe-fonts/source-code-pro" && \

fc-cache -f -v "$FONT_HOME/adobe-fonts/source-code-pro")

### Die Fonts liegen jetzt unter ~/.local/share/fonts/adobe-fonts/source-code-pro

The font used can be checked with : M-x describe-font
This is too small for me. Therefore I use 15pt. This is set in .spacemacs
using the variable dotspacemacs-default-font.

;; Default font, or prioritized list of fonts. `powerline-scale' allows to

;; quickly tweak the mode-line size to make separators look not too crappy.

dotspacemacs-default-font '("Source Code Pro"

:size 15

:weight normal

:width normal

:powerline-scale 1.1)

2.3.8 Set up SpeedKeys.

There is a module called org-speed-commands, sometimes also called speed-
keys, which can be used to navigate an org-structure much faster.
To use it, the variable org-use-speed-commands must be set to non-nil
via M-x customize-variable.
Weblinks:

Stack Exchange key bindings - how to use org-mode speed commands
(speed keys)? - Emacs Stack Exchange

Blog scratch Org Speed Keys | scratch

Display Speed Commands Key Binings:

Cursor on first star of an org heading + ?
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3 Create Static Website

In this chapter I want to show how to create a static website from the org-
mode �les. I will use the org-publish feature which converts org-�les to html.
Initially I publish to a local web server and then sync the site to the internet.

3.1 Create local website.

I would like to create a website from the project that runs on a local web
server.
It is a static website that can later be replicated on a web server on the
Internet.

3.1.1 Installation of nginx

I use the nginx web server, there is an installation package of Ubuntu.
There is a manual at: nginx on ubuntu

### Install nginx

sudo apt-get update

sudo apt-get install nginx

Y

## start nginx

sudo /etc/init.d/nginx start

sudo /etc/init.d/nginx status

sudo /etc/init.d/nginx stop

## show web root

ls -la /var/www/html/index.nginx-debian.html

## setup a simple website:

sudo mkdir -p /var/www/html/simple

sudo mkdir -p /var/www/html/simple

cd /var/www/html/simple

ls -la

sudo chown lubuntu .

cat << EOF > /var/www/html/simple/index.html

<html>
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<body>

<h1>Welcome to simple Web!</h1>

<p>If you see this page, Simple Web ist running.</p>

</body>

</html>

EOF

cat index.html

### get local ip address in lan

ip a #http://10.211.55.8/

URL for testing: http://localhost/
URL for testing: http://localhost/index.nginx-debian.html
URL for testing: http://localhost/simple/index.html
URL on the LAN: http://10.211.55.8/
Okay.

3.1.2 Setting up org-publish

With org-publish a website can be created.
First of all I create the directory for the webroot and assign permissions to
be able to work as user lubuntu.

### Clean up

sudo rm -rf /var/www/html/orgweb/

sudo rm -rf /var/www/html/

#*******

### create directoy for project live-scripting

sudo mkdir -p /var/www/html/orgweb

### nginx worker and lubuntu must have access

sudo chown lubuntu /var/www/html/orgweb/

cd /var/www/html/orgweb

ls -la

### Force regenerating the project

rm -r /var/www/html/orgweb/*

17

http://localhost/
http://localhost/index.nginx-debian.html
http://localhost/simple/index.html
http://10.211.55.8/


ls -la /var/www/html/orgweb

find /var/www/html/orgweb

cd ~/org/

find . -exec touch {} \;

Now I need the con�guration in an alist variable. This con�guration de-
scribes the publishing process.

;; Eval with C-x C-e at end of line

;; Publisch with M-x org-publish-project RET org RET

(require 'ox-publish)

(setq org-publish-project-alist

'(

;; ... add all the components here (see below)...

("orgxxx" :components ("org-notes" "org-static"))

("org-notes"

:base-directory "~/org/live-scripting/"

:base-extension "org"

:publishing-directory "/var/www/html/live-scripting"

;;:exclude ".*"

;;:include ["foobar.org"]

:recursive t

:publishing-function org-html-publish-to-html

:headline-levels 4 ; Just the default for this project.

:auto-preamble t

:auto-sitemap t ; Generate sitemap.org automagically...

:sitemap-filename "sitemap.org" ; ... call it sitemap.org (it's the default)...

:sitemap-title "Sitemap" ; ... with title 'Sitemap'.

)

("org-static"

:base-directory "~/org/live-scripting/"

:base-extension "css\\|js\\|png\\|jpg\\|jpeg\\|gif\\|pdf\\|txt\\|mp3\\|ogg\\|swf"
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:exclude ".git\\|LICENSE"

:publishing-directory "/var/www/html/live-scripting/"

:recursive t

:publishing-function org-publish-attachment

)

))

The Publish process is called with : M-x org-publish-project

Then in the next step one of the projects con�gured in alist can be selected.

This will produce the site with the html page:
http://localhost/live-scripting/live-scripting.html

Test URL: http://localhost/live-scripting/sitemap.html
Test URL: http://localhost/live-scripting/live-scripting.html

3.1.3 Load con�guration for org-publish from external �le.

I want to save the con�guration to an external �le and load it on Emacs
startup.
To do this I create the �le publish-project.el and load it into .spacemacs:

;; Load the configuration for org-publish

(load-file "~/org/live-scripting/publish-project.el")

Okay.

3.1.4 Attachments and images

File attachments and images can be dragged and dropped directly into the
org �le. The module org-download then takes care that these �les are em-
bedded and stored in the folder images. Images are displayed inline, a link
is generated for �les other and images.
These �les are also copied by org-publish to the website.
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Example of an embedded image:
(setq org-image-actual-width nil)

Figure 4: Embedded image �le

Beispiel für eine eingebettete PDF Datei:

3.1.5 Problem: Some images are not displayed.

Some images are not displayed in the generated website.

1. Analysis There are �les under the web root that belong to the user
lubuntu and have no read permission for others. The nginx worker
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Org-Mode Reference Card (1/2)
(for version 9.1.9)

Getting Started

To read the on-line documentation try M-x org-info

Visibility Cycling

rotate current subtree between states TAB
rotate entire buffer between states S-TAB
restore property-dependent startup visibility C-u C-u TAB
show the whole file, including drawers C-u C-u C-u TAB
reveal context around point C-c C-r

Motion

next/previous heading C-c C-n/p
next/previous heading, same level C-c C-f/b
backward to higher level heading C-c C-u
jump to another place in document C-c C-j
previous/next plain list item S-UP/DOWN [2]

Structure Editing

insert new heading/item at current level M-RET
insert new heading after subtree C-RET
insert new TODO entry/checkbox item M-S-RET
insert TODO entry/ckbx after subtree C-S-RET
turn (head)line into item, cycle item type C-c -
turn item/line into headline C-c *
promote/demote heading M-LEFT/RIGHT
promote/demote current subtree M-S-LEFT/RIGHT
move subtree/list item up/down M-UP/DOWN
move the line at point up/down M-S-UP/DOWN
sort subtree/region/plain-list C-c ^
clone a subtree C-c C-x c
copy visible parts of the region C-c C-x v
kill/copy subtree C-c C-x C-w/M-w
yank subtree C-c C-x C-y or C-y
narrow buffer to subtree / widen C-x n s/w

Capture - Refile - Archiving

capture a new item (C-u C-u = goto last) C-c c [1]

refile subtree (C-u C-u = goto last) C-c C-w
archive subtree using the default command C-c C-x C-a
move subtree to archive file C-c C-x C-s
toggle ARCHIVE tag / to ARCHIVE sibling C-c C-x a/A
force cycling of an ARCHIVEd tree C-TAB

Filtering and Sparse Trees

construct a sparse tree by various criteria C-c /
view TODO’s in sparse tree C-c / t/T
global TODO list in agenda mode C-c a t [1]

Tables

Creating a table

just start typing, e.g. |Name|Phone|Age RET |- TAB
convert region to table C-c |
... separator at least 3 spaces C-3 C-c |

Commands available inside tables

The following commands work when the cursor is inside a table.
Outside of tables, the same keys may have other functionality.

Re-aligning and field motion

re-align the table without moving the cursor C-c C-c
re-align the table, move to next field TAB
move to previous field S-TAB
re-align the table, move to next row RET
move to beginning/end of field M-a/e

Row and column editing

move the current column left M-LEFT/RIGHT
kill the current column M-S-LEFT
insert new column to left of cursor position M-S-RIGHT

move the current row up/down M-UP/DOWN
kill the current row or horizontal line M-S-UP
insert new row above the current row M-S-DOWN
insert hline below (C-u : above) current row C-c -
insert hline and move to line below it C-c RET
sort lines in region C-c ^

Regions

cut/copy/paste rectangular region C-c C-x C-w/M-w/C-y

Miscellaneous

to limit column width to N characters, use ...| <N> |...
edit the current field in a separate window C-c ‘
make current field fully visible C-u TAB
export as tab-separated file M-x org-table-export
import tab-separated file M-x org-table-import
sum numbers in current column/rectangle C-c +

Tables created with the table.el package

insert a new table.el table C-c ~
recognize existing table.el table C-c C-c
convert table (Org-mode ↔ table.el) C-c ~

Spreadsheet

Formulas typed in field are executed by TAB, RET and C-c C-c.
= introduces a column formula, := a field formula.

Example: Add Col1 and Col2 |=$1+$2 |
... with printf format specification |=$1+$2;%.2f|
... with constants from constants.el |=$1/$c/$cm |
sum from 2nd to 3rd hline |:=vsum(@II..@III)|
apply current column formula | = |

set and eval column formula C-c =
set and eval field formula C-u C-c =
re-apply all stored equations to current line C-c *
re-apply all stored equations to entire table C-u C-c *
iterate table to stability C-u C-u C-c *
rotate calculation mark through # * ! ˆ $ C-#
show line, column, formula reference C-c ?
toggle grid / debugger C-c }/{

Formula Editor

edit formulas in separate buffer C-c ’
exit and install new formulas C-c C-c
exit, install, and apply new formulas C-u C-c C-c
abort C-c C-q
toggle reference style C-c C-r
pretty-print Lisp formula TAB
complete Lisp symbol M-TAB
shift reference point S-cursor
shift test line for column references M-up/down
scroll the window showing the table M-S-up/down
toggle table coordinate grid C-c }

Links

globally store link to the current location C-c l [1]

insert a link (TAB completes stored links) C-c C-l
insert file link with file name completion C-u C-c C-l
edit (also hidden part of) link at point C-c C-l

open file links in emacs C-c C-o
...force open in emacs/other window C-u C-c C-o
open link at point mouse-1/2
...force open in emacs/other window mouse-3
record a position in mark ring C-c %
jump back to last followed link(s) C-c &
find next link C-c C-x C-n
find previous link C-c C-x C-p
edit code snippet of file at point C-c ’
toggle inline display of linked images C-c C-x C-v

Working with Code (Babel)

execute code block at point C-c C-c
open results of code block at point C-c C-o
check code block at point for errors C-c C-v c
insert a header argument with completion C-c C-v j
view expanded body of code block at point C-c C-v v
view information about code block at point C-c C-v I
go to named code block C-c C-v g
go to named result C-c C-v r
go to the head of the current code block C-c C-v u
go to the next code block C-c C-v n
go to the previous code block C-c C-v p
demarcate a code block C-c C-v d
execute the next key sequence in the code
edit buffer

C-c C-v x

execute all code blocks in current buffer C-c C-v b
execute all code blocks in current subtree C-c C-v s
tangle code blocks in current file C-c C-v t
tangle code blocks in supplied file C-c C-v f
ingest all code blocks in supplied file into the
Library of Babel

C-c C-v i

switch to the session of the current code block C-c C-v z
load the current code block into a session C-c C-v l
view sha1 hash of the current code block C-c C-v a

Completion

In-buffer completion completes TODO keywords at headline
start, TeX macros after “\”, option keywords after “#-”, TAGS
after “:”, and dictionary words elsewhere.

complete word at point M-TAB

Figure 5: Eingebettete PDF Datei.

process belongs to www-data and cannot read these �les.
These are some image �les I dragged and dropped from Firefox to org-
mode.

2. Solution I search these �les and set the permissions.
Afterwards the website must be regenerated with org-publish.

### Handle Permissions.

cd ~/org/live-scripting

## Find files that don't have read permission for others.

find images -user lubuntu \! -perm -o+r -type f -exec ls -l {} \;

find images -user lubuntu \! -perm -o+r -type f -exec touch {} \;

## Add read permission for other

find images -user lubuntu \! -perm -o+r -type f -exec chmod o+r {} \;

3.1.6 HTML Style Readtheorg

There is a very good CSS based style sheet framework for org �les.
See: https://github.com/fniessen/org-html-themes
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I want to use the ReadTheOrg theme and install it locally.

### Clean update

cd

rm -rf ~/org/org-html-themes

### Clone the Project

cd org

git clone https://github.com/fniessen/org-html-themes.git

find~/org/org-html-themes

###

To use the themes, the directory styles must be copied to the website.
For this I extend the con�guration in publish-project.el

("org-themes"

:base directory "~/org/org-html-themes/styles"

:base-extension "css\\|js\\|png\\|jpg\\|jpeg\\|gif\\|pdf\\|txt\\|mp3\\|ogg\\|swf"

:exclude ".git\\\|LICENSE"

:publishing-directory "/var/www/html/live-scripting/styles"

:recursive t

:publishing-function org-publish-attachment

)

The theme is applied by the following directive SETUPFILE at the be-
ginning of the org �le:

#+SETUPFILE: ~/org/org-html-themes/setup/theme-readtheorg-local.setup

#+Options: \n:t

#+Title: live-scripting

With calling org-publish the style-sheet is now used in this �le.

3.2 Multi-Project Website

I want to create a website that spans multiple git projects.
This website will be created and updated with a single command. It uses
the recursive feature org org-publish.
It is implemented in publish-project.el in the orgweb de�nition.
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3.2.1 Creating the fork of org-html-themes

I have used the GitHub project org-html-themes for applying style sheets to
my local website. Now I want to fork this project. I can then make local
modi�cations to the themes. I also want to integrate it into my local website.
I use the GitHub GUI on the web to fork and rename the project to aw-org-
html-themes: https://github.com/andreaswittmann/aw-org-html-themes
I make a local clone of the project.

### Clean update

cd

rm -rf ~/org/aw-org-html-themes

### Clone the Project

cd org

git clone https://github.com/andreaswittmann/aw-org-html-themes.git

find ~/org/aw-org-html-themes

###

3.2.2 Using styles of the forked project.

Now I want to use my fork aw-org-html-themes. I have to change the direc-
tive SETUPFILE in all org-�les and the base-directory path for the compo-
nent orgweb-themes in publish-project.el.

#+SETUPFILE: ~/org/aw-org-html-themes/setup/theme-readtheorg-local.setup

#+Options: \n:t

#+Title: live-scripting

3.2.3 Problem: the folder "style" is not found by the html �les.

The publish process does not respect the folder structure. It expects a style
folder on the same directory level. The solution must take into account the
option to replicate the static website to a server on the internet.

I write the emacs-lisp function "�xStyleFolder". It is called by :completion-
function. It gets the projectPropertyList as an argument. This list con-
tains the publishingDirectory. The function will call the shell script �xStyle-
Folder.sh that which creates symbolic links in all sub folders.
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;; Example for projectPropertyList

(:base-directory ~/org/aw-org-html-themes/styles :base-extension css\|js\|png\|jpg\|jpeg\|gif\|pdf\|txt\|mp3\|ogg\|swf :exclude .git\|LICENSE :publishing-directory /var/www/html/orgweb/styles :completion-function myFunction :recursive t :publishing-function org-publish-attachment)

The emacs-lisp function �xStyleFolder is contained in the �le publish-
project.sh.
The shell script is located at ~/org/live-scripting/bin/�xStyleFolder.sh

3.2.4 Updating the orgweb site

The orgweb site can be updated with org-publish.

Emacs Command Description

M-x org-publish-project RET orgweb RET Create or Update all components of orgweb.

Cleaning up and recreating everything.

### Force regenerating the project

## Delete Webroot

rm -r /var/www/html/orgweb/*

ls -la /var/www/html/orgweb

## touch all org files.

cd ~/org/

find . -exec touch {} \;

## use org-publish-project to recreate all.

## check

find /var/www/html/orgweb/

This recreates the website with all attachments.

3.3 Publish to github pages.

(Don't do it! Read the conclusion)
I want to publish the static website orgweb to github pages.
There are di�erent approaches explained on: https://help.github.com/

en/github/working-with-github-pages
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3.3.1 Publish to docs folder

I create docs directory and copy the site there. Then I commit and push it
with magit.

### Creating a link.

cd ~/org/live-scripting

rm -rf ~/org/live-scripting/docs

mkdir -p ~/org/live-scripting/docs

cd ~/org/live-scripting/docs

cp -r /var/www/html/orgweb/* .

ls -la

find .

## create index.html from sitmap.html

cp sitemap.html index.html

## remove all symlinks, they are external and break github pages.

cd ~/org/live-scripting/docs

find . -type l

find . -type l -exec rm {} \;

## create symlinks manually

cd ~/org/live-scripting/docs/live-scripting

ls -la

ln -s ../styles styles

Ok, this works.
The site is online at: https://andreaswittmann.github.io/live-scripting/
sitemap.html

The site is online at: https://andreaswittmann.github.io/live-scripting/
live-scripting/live-scripting.html

The style sheet is loaded. The PDF attachments are available as well.

Summary:

It is possible to publish the project to the docs folder in Github, thus demon-
strating the capability of org-publish to create a static web site, including
style sheets and attachments. However there are some aspects that I don't
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like. First, since this is a multi-project website, the publish site shouldn't re-
ally be inside the project live-scripting but be a project on it's own. Second,
I don't like the idea of copying the project from the publish site to the docs
directory, thus duplicating all �les. This was necessary because git doesn't
follow symbolic link.

3.3.2 Publish to a project

In this approach the published website becomes it's own GitHub project.

1. Activities There are the following activities:

� Create new GitHub Project orgweb.

� Clone orgweb to local publish site.

� Insert public key on GitHub to push without password

� Use org-publish to create the project.

� Use Magit to publish site to GitHub

� Write script to automatically commit on push on every org-publish

� Update FixStyleFolder to use relative links.

That's it.

2. GitHub Project orgweb.

### Clean up and clone Website.

sudo rm -rf /var/www/html/orgweb/

cd /var/www/html/

ls -la
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sudo git clone https://github.com/andreaswittmann/orgweb.git

sudo chown -R lubuntu:lubuntu /var/www/html/orgweb/

cd /var/www/html/orgweb/

### Fix symbolic links

find . -type l

## one level

cd /var/www/html/orgweb/./styles/

cd /var/www/html/orgweb/./live-scripting/

rm styles

ln -s ../styles styles

ls -la

ls styles

## two levels

cd /var/www/html/orgweb/./aw-org-html-themes/demo/

cd /var/www/html/orgweb/./aw-org-html-themes/styles/

cd /var/www/html/orgweb/./live-scripting/moreorg/

rm styles

ln -s ../../styles styles

ls -la

ls styles

## three levels

cd /var/www/html/orgweb/./aw-org-html-themes/styles/readtheorg

rm styles

ln -s ../../../styles styles

ls -la

The site can be found at: https://andreaswittmann.github.io/

orgweb/sitemap.html

An update of the site includes three steps:

(a) org-publish orgweb
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(b) magit or git: add and commit �les in project orgweb

(c) git push project orgweb.

(a) Troubleshooting After pushing the project orgweb, GitHub starts
a jykell Process to publish the site.
This my lead to an error, send via email. Unfortunately the mes-
sage very often is just useless like this.
There are no additional information.

Error: The page build failed for the `master` branch with the following error:

3. Rebuilding the website.

These are the steps to rebuild the website completely

cd /var/www/html/orgweb/

## find all generated files and remove them, exclude .git

find . -maxdepth 1 ! -name .git ! -name README.md

find . -maxdepth 1 ! -name .git ! -name README.md -exec rm -rf {} \;

ll

## removing files

git add .

git status

git commit -m "Resetting project"

git push

# touch all file to qualify for regenerating the web

cd ~/org

ll

find . ! -name sitemap.org -exec touch {} \;

### regenerate web in emacs with org-publish-project orgweb
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3.3.3 Conclusion

While it looks tempting to publish to github pages I have to advice against
it.
I managed to publish the website orgweb several times but also often ran
into errors.
The information provided to resolve the errors is not su�cient. This results
in frustrating and time consuming analysis sessions. It is a waste of time.
The Pages feature in github up to now [2020-06-30 Di] is not mature enough
to be used in real world projects!
Other publishing options like web servers or Amazon S3 will be explored.

3.4 Publish to Amazon S3

Amazon S3 is a storage service that includes basic webserver capabilities. It
can host static websites, but doesn't not allow for https and authentication.
This is �ne for this project.

3.4.1 Installation of aws-cli and bucket creation

I need the the command line client from aws to access s3 buckets. I want to
install aws-cli version 2.
I follow instructions from https://docs.aws.amazon.com/de_de/cli/latest/

userguide/install-cliv2-linux.html

mkdir ~/Downloads/aws-cli

cd ~/Downloads/aws-cli

ls -la

## we need curl

sudo apt install curl

## install aws-cli

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

aws --version

# aws-cli/2.0.27 Python/3.7.3 Linux/5.3.0-61-generic botocore/2.0.0dev31
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### install profile and credentials for aws

cat ~/.aws/config

cat ~/.aws/credentials

### Test s3 access

export AWS_PROFILE=anwi-gmbh

aws s3 ls

### Creating a buckets, prepare website hosting on aws gui in the browser

aws s3 mb s3://live-scripting

aws s3 ls s3://live-scripting --recursive

#aws s3 rm s3://live-scripting --recursive

Ok, now access s3 via the aws cli works.

3.4.2 Cleanup and Create Website

The following code deletes the local Website, touches all �le in the org folder
and recreates the local website.
It then syncs to S3.

### Delete Website on Bucket

mkdir ~/temp

cd ~/temp

cp /var/www/html/orgweb/sitemap.html .

ls -la

aws s3 sync . s3://live-scripting --delete

### Delete and create local website.

rm -rf /var/www/html/orgweb/*

find ~/org/ -exec touch {} \;

### !!! create website in emacs with org publish !!!

## or use script publish.sh.

publish.sh -c publish

### Sync website to S3

cd /var/www/html/orgweb
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ls -la

aws s3 sync /var/www/html/orgweb s3://live-scripting/orgweb --delete

The website is available at http://live-scripting.s3-website.eu-central-1.
amazonaws.com/sitemap.html

3.4.3 Create a bucket policy

The bucket has to be made available for public access. I follow the aws in-
structions: https://docs.aws.amazon.com/de_de/AmazonS3/latest/dev/
WebsiteAccessPermissionsReqd.html

I use the aws management console.
During the process I create the following bucket policy.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "PublicReadGetObject",

"Effect": "Allow",

"Principal": "*",

"Action": [

"s3:GetObject"

],

"Resource": [

"arn:aws:s3:::live-scripting/*"

]

}

]

}

Ok, this gives public access to the website.

1. Troubleshooting symlinks. Problem: on the second run of �xStyle-
Folder.sh the link /var/www/html/orgweb/styles/styles is created but
shouldn't
Analysis: This happens only on the second run of the script.
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It also happens in subsequent identical calls to ln
I don't know why this happens.
Solution: Instead of using symlinks I replicate the styles folder using
rsync.
On the one hand this approach produces redundant �les. On the other,
it works stable and allows to use the same solution for local and remote
websites.

## run script

##-----------------------------------------------------------------------------------------------

~/org/live-scripting/bin/fixStyleFolder.sh -c mycopy -d /var/www/html/orgweb/styles -L DEBUG

~/org/live-scripting/bin/fixStyleFolder.sh -c mycopy -d /var/www/html/orgweb/styles

cp -R ~/org/aw-org-html-themes/styles /var/www/html/orgweb

## test rsync

export WEB_ROOT=/var/www/html/orgweb

export SOURCE_DIR=/var/www/html/orgweb/styles

#export TARGET_DIR=/var/www/html/orgweb/styles

export TARGET_DIR=/var/www/html/orgweb/live-scripting

# test rsync

rsync -av --dry-run --delete $SOURCE_DIR $TARGET_DIR

rsync -av --delete $SOURCE_DIR $TARGET_DIR

ls -la $TARGET_DIR

find $TARGET_DIR/styles

rm -rf $TARGET_DIR/styles

find $WEB_ROOT -name "styles"

find $WEB_ROOT -name "styles" -exec rm -rf {} \;

## check resuclt

cd /var/www/html/orgweb/styles/

find /var/www/html/orgweb/ -type l -exec rm {} \;

find /var/www/html/orgweb/ -type l

find /var/www/html/orgweb/ -type d

## executing ln two times produes error

cd /var/www/html/orgweb/aw-org-html-themes/demo
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pwd /var/www/html/orgweb/aw-org-html-themes/demo

ls -la

ln -s ../../styles styles

mkdir -p /var/www/html/orgweb/aw-org-html-themes/foobar

cd /var/www/html/orgweb/aw-org-html-themes/foobar

ls -la

ln -s ../../styles styles

Test URL: http://localhost/orgweb/sitemap.html

3.5 Automation of Publishing Process

This includes following steps:

1. Publish to local website.

2. Update lunr search index.

3. Sync to public website on S3.

3.5.1 Publishing with script publish.sh

The �rst task involves running emacs in batch mode and executing org-
publish.
Then I will use the awscli to sync the website to S3.
These steps will be implemented in the script ~/org/live-scripting/bin/publish.sh

### Publish to local website via script.

~/org/live-scripting/bin/publish.sh -c publish -L DEBUG

# If this call complains about a read lock, close emacs and start from a terminal.

### extending PATH in .profile

# extend path to include custom scripts

export PATH=~/org/live-scripting/bin:${PATH}
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## The publish process can be started with:

publish.sh -c publish

3.5.2 Problem syntax highlighting is poor

The syntax highlighting for the bash source code blocks look poor when us-
ing the script publish.sh.
Analysis:
This is complicated. Puh.
This problem is discussed at https://emacs.stackexchange.com/questions/
31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e

In short, the module responsible for formatting code snippets, htmlize, is con-
�gured di�erently in both situations.
Solution:

1. Set variables in publish-con�g.el:

(setq org-export-with-broken-links t)

(setq org-html-htmlize-output-type 'css)

1. Create syntax.css using "M-x org-html-htmlize-generate-css" in emacs.

2. Edit the setup-�le to load syntax.css

3. Distribute syntax.css together with the other style sheet �les.

The result can be observed in the following sequence of pictures.
The �rst one shows the publishing result from within emacs unsing M-x org-
publish-project.
The second shows the result of publishing in emacs batch mode without
modi�cations of this solution.
The third pictures shows the result of publishing in emacs batch mode with
this solution applied.

34

https://emacs.stackexchange.com/questions/31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e
https://emacs.stackexchange.com/questions/31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e


Figure 6: Di�erences in syntax highlighting depending on publish method.

Ok. While this solutions solves the problem, more work could be done
to �ne tune the style sheets.

4 Adding Search to the web

An important aspect of documentation is �nding the documented informa-
tion. Once the web grows, full text search is needed. Lunr as a full text
search engine is a good choice. It is based on java script and as it states on
it's website: it shines like solr but not as bright.
Lunr Website

4.1 Lunr Integration

There is a Github project that indexes HTML pages with lunr and cheerio
and makes them searchable with a search page.
Lunr-Index-and-Search-for-Static-Sites This project can be used as reference.
I temporarily clone the project to use some artefacts.

The following diagram helps to explain how everything works together.

I use a lunr working director to generate the search index. Lunr and Cheerio
must be installed here.
I use the �le build_index.js from the github project, copy it to the working
directory and rename it to buid_index_orgweb.js to re�ect that it is modi-
�ed for orgweb. I have to edit it to insert my web root. This javascript �le
uses cheerio to parse all html �les under my web root and creates the index
in a �le lunr_index.js.
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Figure 7: Directory Layout for Lunr Search in live-scripting

This has to be updates whenever the website is published.

At the web root I use the �les runclient.js and search.html which I copy
from the github project.
The following script block executes everything.

WORKDIR=~/lunr

WEBROOT=/var/www/html/orgweb

### create a project directory

mkdir -p $WORKDIR

cd $WORKDIR

ls -la

mkdir $WEBROOT/lunr

cd $WEBROOT/lunr

## Install npm

sudo apt install npm

## Install lunr

npm update node
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npm install lunr

npm install cheerio

### create a temporary working directory

mkdir ~/lunr_work

cd ~/lunr_work

### clone the project with example site

git clone https://github.com/BLE-LTER/Lunr-Index-and-Search-for-Static-Sites.git

cd ~/lunr_work/Lunr-Index-and-Search-for-Static-Sites

### copy relevant files

cp build_index.js $WORKDIR/build_index_orgweb.js

cp example_site/search.css $WEBROOT/

cp example_site/search.html $WEBROOT/

cp example_site/lunrclient.js $WEBROOT/

### clean up lunr_work

cd

rm -rf ~/lunr_work

### Edit costants in build_index_orgweb.js

cd $WORKDIR

ls -la

### build the index for the example site and copy to webroot

node build_index_orgweb.js

cp lunr_index.js $WEBROOT

### Check index

cd $WEBROOT

ls -la

### Take some artefacts under git control

LUNR_FILES=~/org/live-scripting/lunr_files

mkdir $LUNR_FILES

cp $WORKDIR/build_index_orgweb.js $LUNR_FILES

cp $WEBROOT/lunrclient.js $LUNR_FILES

cp $WEBROOT/search.html $LUNR_FILES

### check and git

cd $LUNR_FILES

ls -la

git status
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### use magit to add and commit

Now the search page is available at: http://localhost/orgweb/search.
html

And on S3 at: http://live-scripting.s3-website.eu-central-1.amazonaws.
com/search.html

The index creation must be part of the publishing process.
I add it to the script publish.sh.

4.2 Creating an Index Page for the web

I want to have a central index page for orgweb, named index.html, which is
located at the orgweb root.
This page includes the search �eld and the sitemap. I is created from the
�le index.org using org-publish.

## copy file to include in git

cp ~/org/index.org ~/org/live-scripting/lunr_files/

cp ~/org/index.org.template ~/org/live-scripting/lunr_files/

ls -la ~/org/live-scripting/lunr_files/

## commit and push with magit

4.2.1 Creating the search �eld

The Lunr integration uses the search.html �le. I copy the content to my new
index.org �le using HTML export declarations.
I also need the content from the HTML head element. I can set these in the
index.org using HTML_HEAD declarations.
The �le index.org is located directly under ~/org which is outside any git
project. Therefore a save a copy at ~/org/live-scripting/lunr_�les/ and put
it under git control. On any modi�cation it has to be copied manually.

4.2.2 Creating the sitemap

A sitmap for orgweb is created during the org-publish process. It results in
the �le sitemap.html

38

http://localhost/orgweb/search.html
http://localhost/orgweb/search.html
http://live-scripting.s3-website.eu-central-1.amazonaws.com/search.html
http://live-scripting.s3-website.eu-central-1.amazonaws.com/search.html


I only need the body part form it.
I use perl to cut the relevant lines and paste them at the end of the index.org
�le.
The code is manually developed below.

cd ~/org

ls -la

cat /var/www/html/orgweb/sitemap.html

### Cut out relevant part of sitemap.html

### explanation of the chained command

cat /var/www/html/orgweb/sitemap.html | \

perl -ne 'print if /<body>/../<\/body>/' | \ # Take only the body part

perl -ne 'print if /<div id=\"content\">/../<\/div>/' | \ # Take only the div blocks

perl -ne 'print if ! ( $. <= 2)' | \ # Cut away the first two lines

perl -ne 'print if ! eof' # Cut away the last line

### The chained command

cat /var/www/html/orgweb/sitemap.html |\

perl -ne 'print if /<body>/../<\/body>/' |\

perl -ne 'print if /<div id=\"content\">/../<\/div>/' |\

perl -ne 'print if ! ( $. <= 2)' |\

perl -ne 'print if ! eof' > /tmp/sitemap.txt

cat /tmp/sitemap.txt

### Insert it into index.org

cat ~/org/index.org.template

cp ~/org/index.org.template ~/org/index.org

echo "#+BEGIN_EXPORT html" >> ~/org/index.org

cat /tmp/sitemap.txt >> ~/org/index.org

echo "#+END_EXPORT" >> ~/org/index.org

cat ~/org/index.org

# Publish for testing

publish.sh -c publish

This is added to publish.sh and thus automatically updated on every
publish action.
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This also includes extending publish-project.el to include a single publish
task for index.org.
Since index.org is modi�ed after the website is published, it has to be regen-
erated.
It is also implemented in publish.sh and works �ne.
Ok.

4.2.3 Creating a Home Button

The orgmode HTML exporter de�nes the variables HTML_LINK_HOME
and HTML_LINK_UP. I want to include a "Home-Link" on every HTML
pages that links to the index.html of orgweb.
I need to use a root-relative URL because it must work in orgweb on local-
host and on the S3 hosted site. Therefore it is necessary that the directory
structures in both websites are identical.

#+HTML_LINK_HOME: /orgweb/index.html

#+HTML_LINK_UP: /orgweb/index.html

5 Sharing Options

It is not always possible or wanted to give access to the orgweb to everybody
on the internet. There are multiple Options to share the whole org-web,
single org-�les or only parts of an org-�le. The simplest form is an export
to an ascii �le which is quite readable but omits pictures and attachements.
The most versatile form is a PDF �le which features clickable links and inline
integration of pictures. It is also possible to zip the whole orgweb or parts
of it and send it to the recipient via �le sharing. Furthermore there is an
Markdown export options as well. All these possiblities produce quite good
results out of the box.
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5.1 ASCII Export

5.2 Markdown Export

5.3 HTML Archive

5.4 PDF Export

The whole org�le or parts of it can be exported to PDF. This is done via
the LATEX exporter.
It's been quite a while since I worked with Latex the last time and I am sur-
prised that it is still used and well supported in 2020. The export to Latex
and PDF works �awless and the result is very usable. However, if you are not
satis�ed with the result, it gets complicated. There are endless ways to tailor
the export process, but that requires deep knowledge of the exporter backend,
Tex and Latex. Some con�gurations can be made via org mode directives
and emacs variables. The org mode documentation describes in detail. It
can be found here: https://orgmode.org/manual/LaTeX-Export.html.
If you need more �exibility, this tutorial on wrog is a good starting point
to understand and modify the export process: https://orgmode.org/worg/
org-tutorials/org-latex-export.html

To export an org mode �le to pdf simply use this command.

M-x org-letex-export-to-pdf

The Latex Class can be controlled with org mode directive.
Choose the latex class: article, report, book.
, #+LATEX_CLASS: report

Here is an example PDF export of this live-scripting.org.

5.5 Problem: PDF creation fails

I get the error message:

LaTeX Error: File `wrapfig.sty' not found.

Analysis:

This problem is discussed at: https://tex.stackexchange.com/questions/
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291531/exporting-org-files-to-latex-error

Solutions:

I could solve the problem by installing texlive and extra packages.

sudo su

#password

apt-get update

apt-get install texlive

apt-get install texlive-latex-extra

This installs the versions:

# texlive newest version (2019.20190710-1).

# texlive-latex-extra newest version (2019.20190710-1).

And this solves the problem.

6 Miscellaneous

6.1 Handling large images

Large images can be resized during inline displays and in export to html and
PDF.
We can use modi�er attributes for it.
In the HTML page, the resized image should open to it's full size by clicking
it. This can be achieved by including a html link as the description part in
org-link.
I added the elisp function org-download-link-format-function-aw in the �le
publish-project.el.
By customizing the variable org-download-link-format-function.
The function is a modi�ed version of the default function with alters the
format of the image link.

Here is an example. A large screenshot is included but with speci�ed
width values.
The resulting small picture in the html �le is clickable and opens the picture
�le in full size.
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Figure 8: Screenshot that shows the modi�cations for clickable image links.

In order to use this feature, we need to customize the variable as ex-
plained above.

6.2 Side by Side images using a table.

It is possible to place images side by side, using an orgmode table.
However tables orgmode tables don't support multi-line cells. Thus it is not
possible to enrich it with caption or attributes.
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6.3 Displaying folder structures

Folder Structures can be created with the unix tree command.
It can be presented in a source block.

lubuntu@lubuntu-pc:/var/www/html/orgweb/live-scripting/images$ tree

.

Installation_unter_lubuntu

2020-06-24_11-15-55_orgcard.pdf

2020-06-24_11-21-33_banana.jpeg

2020-06-30_10-25-57_2020-06-21_17-34-52_2020-06-21_17-15-37.png

2020-06-30_10-26-47_2020-06-21_17-34-52_2020-06-21_17-15-37.png

2020-07-03_21-03-36_2020-07-03_21-01-27.png
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6.4 Handling Sub and Superscript

Orgmode uses the underscore letter to indicate superscript. Most of the time
this is not what I want.
The Variable org-use-sub-superscript can be used to customize this behavior.
I choose the option "only with braces" to enable special format when I want
it. Unfortunately this setting is ignored during the publishing process. As
an alternative I use the directive:

#+OPTIONS: ^:{}

;;possible values are t, nil, {}

This will not be_subscript

This will be_{subscript}

This will not be^superscript

This will be^{superscript}

These lines produce the following result:

This will not be_subscript
This will besubscript
This will not be�superscript
This will besuperscript

Ok.
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