
live-scripting

lubuntu

August 21, 2020

Contents

1 Introduction 3

1.1 The Problem . 3
1.2 The live-scripting approach 4
1.3 Emacs org-mode . 4
1.4 Multi Project Website . 4

2 Installation on lubuntu 5

2.1 Prerequisites . 5
2.2 Basic Live-Scripting . 6
2.3 Spacemacs con�guration . 6

2.3.1 Installation . 7
2.3.2 Con�guring the Default Theme. 8
2.3.3 Send to ansi-term . 9
2.3.4 Con�gure Flyspell. 11
2.3.5 Magit Authentication ATTACH 12
2.3.6 Con�guration of org-download ATTACH . . . 13
2.3.7 Install Adobe Font Source Code Pro 14
2.3.8 Set up SpeedKeys. 15

3 Create Static Website 16

3.1 Create local website. 16
3.1.1 Installation of nginx 16
3.1.2 Setting up org-publish 17
3.1.3 Load con�guration for org-publish from external �le. . 19
3.1.4 Attachments and images 19
3.1.5 Problem: Some images are not displayed. 20
3.1.6 HTML Style Readtheorg 21

3.2 Multi-Project Website . 22

1

3.2.1 Creating the fork of org-html-themes 23
3.2.2 Using styles of the forked project. 23
3.2.3 Problem: the folder "style" is not found by the html

�les. 23
3.2.4 Updating the orgweb site 24

3.3 Publish to github pages. 24
3.3.1 Publish to docs folder 25
3.3.2 Publish to a project 26
3.3.3 Conclusion . 29

3.4 Publish to Amazon S3 . 29
3.4.1 Installation of aws-cli and bucket creation 29
3.4.2 Cleanup and Create Website 30
3.4.3 Create a bucket policy 31

3.5 Automation of Publishing Process 33
3.5.1 Publishing with script publish.sh 33
3.5.2 Problem syntax highlighting is poor 34

4 Adding Search to the web 35

4.1 Lunr Integration . 35
4.2 Creating an Index Page for the web 38

4.2.1 Creating the search �eld 38
4.2.2 Creating the sitemap 38
4.2.3 Creating a Home Button 40

5 Sharing Options 40

5.1 ASCII Export . 41
5.2 Markdown Export . 41
5.3 HTML Archive . 41
5.4 PDF Export . 41
5.5 Problem: PDF creation fails 41

6 Miscellaneous 42

6.1 Handling large images . 42
6.2 Side by Side images using a table. 43
6.3 Displaying folder structures 44
6.4 Handling Sub and Superscript 45

2

1 Introduction

Live-Scripting is an approach to combine work in IT projects, documenta-
tion and information retrieval.
Very much like test-driven development combines testing and coding, live-
scripting documents work in command shells, while doing it.

Figure 1: Live-Scripting Session in Emacs.

1.1 The Problem

Since more than 30 years, and even now, IT-work in many case is command
shell centric. For many IP professionals the bash or other shells constitute a
major part of there work. Sophisticated commands are constructed during
problem resolution. Normally these commands are deleted at the end of a
session. When similar problems arise days or weeks later, similar analysis
and solutions steps are repeated again. If documentation of the work is re-
quired, it is an extra time consuming task. We wish to document this work
in an easy way for ourselves and others. This should include an e�ective
search method to quickly �nd documented information.

3

1.2 The live-scripting approach

Live-scripting is a work methodology based on emacs, which documents work
on the command shell while doing it. Instead of entering and executing one
command at a time, in live-scripting we use two windows side by side: An
editor and a shell. The commands in the editor can then be executed with
a single key shortcut in the adjacent shell. This is similar to a debugging
session where we can step through code during execution. In the emacs ed-
itor we can jump between commands, repeat them in any order, duplicate
and modify them. The editor is saved into a text �le at the end of the session.

1.3 Emacs org-mode

Emacs is the ideal tool for it. The ansi-term provides for a robust shell
interface within emacs. Since it is an programmable environment the func-
tions to send a line of code to the ansi-term can be added. Furthermore the
org-mode module is an emacs killer app on its own, adding many features
to organize, format and publish the work. At it's core, org-mode is a mark-
up language similar to markdown, put much more powerful. Emacs provides
elaborated search capabilities across �les and projects. The magit module
is a highly praised interface to git. The fact that most �les are plain text in-
vites the storage in a source code control system like git. But org-mode can
also handle pictures to add screenshots and attachments for �le types like
PDFs and others. org-mode together with a couple of other emacs modules
constitute a cross-media publishing machine which makes it easy to export
to HTML, PDF, Markdown, Con�uence, and more.

1.4 Multi Project Website

Live-scripting, as it is presented here, is a con�guration that spans multi-
ple projects and publishes the org-�les and attachments to a single static
website. This can be used locally or be synchronized to a web server in an
intranet or on the internet. The web site contains a search pages for the
whole site based on lunr, which provides a full text search index to �nd
information across di�erent pages and projects.

4

2 Installation on lubuntu

The installation is performed on Lubuntu. Lubunut is lightweight and there-
fore suitable for virtual machines and cloud environments.

2.1 Prerequisites

A Linux with a graphical interface and a GNU Emacs installation is required
to use live scripting.
In this example we use Lubuntu 19.10 and GNU Emacs 26.3.

sudo sed -i -e 's|disco|eoan|g' /etc/apt/sources.list

sudo apt update

sudo apt upgrade

New Release

lubuntu@lubuntu-pc:~$ lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 19.10

Release: 19.10

Codename: eoan

Install emacs

lubuntu@lubuntu-pc:~$ sudo snap install emacs --classic

2020-06-19T09:39:50+02:00 INFO Waiting for restart...

emacs 26.3 from Alex Murray (alexmurray) installed

Clone project live-scripting

mkdir org; cd org

git clone https://github.com/andreaswittmann/live-scripting.git

Figure 2: This listing shows the Lubuntu upgrade from 19.04 to 19.10 and
the Emacs installation.

This creates the prerequisites for live-scripting.

5

2.2 Basic Live-Scripting

In the base con�guration the GNU Emacs installation is adapted to execute
shell commands from an orgmode �le.
I use the init.el from this project

Copy init.el to emacs

cp ~/org/live-scripting/init.el ~/.emacs.d/

Restart emacs

We now open two windows side by side in emacs. In the right one we
execute an ansi-term.
In the left window we execute shell commands from an orgmode �le.

M-x 3 Open two windows
C-x o other-window
M-x ansi-term Open ansi-term
C-x 0 other-window
F5 Send command and step one line further.

Now shell commands can be executed directly. The code block is only
for formatting.

example execution of shell commands with live-scripting

ls -la

date

whoami

pwd

2.3 Spacemacs con�guration

Emacs con�guration is very time consuming. With the Spacemacs project
you get a very extensively con�gured Emacs.

6

2.3.1 Installation

Spacemacs is cloned from GitHub. Before doing so, I backup the destination
directory so that it is not overwritten. The old init.el is no longer used.

move emacs directory, to save it

mv ~/.emacs.d ~/_emacs.d

mkdir ~/.emacs.d

cd ~/.emacs.d

ls -la

Install spacemacs

git clone https://github.com/syl20bnr/spacemacs ~/.emacs.d

Emacs will now restart. The Spacemacs start dialog follows.
I choose the following options:

� Editing Style: emacs

� Distribution: standard

� Completion Framework: helmet

I edit ~/.spacemacs to use the following layers:

;; List of configuration layers to load.

dotspacemacs-configuration-layers

'(

;; --

;; Example of useful layers you may want to use right away.

;; Uncomment some layer names and press <SPC f e R> (Vim style) or

;; <M-m f e R> (Emacs style) to install them.

;; --

helm

auto-completion

;; better-defaults

emacs-lisp

7

git

markdown

org

(shell :variables

shell-default-height 30

shell-default-position 'bottom)

spell-checking

;; syntax-checking

version-control

themes-megapack

)

;; List of additional packages that will be installed without being

;; wrapped in a layer. If you need some configuration for these

;; packages, then consider creating a layer. You can also put the

;; configuration in `dotspacemacs/user-config'.

dotspacemacs-additional-packages

'(

minimap

sr-speedbar

;;;; Org

org-beautify-theme

)

Emacs has to be restarted several times until it initializes without errors.

I want the .spacemacs �le to become part of the project. It will be linked
from the user directory.

cd ~

mv .spacemacs org/live-scripting/

ln -s ~/org/live-scripting/.spacemacs ~/.spacecmacs

2.3.2 Con�guring the Default Theme.

To do this you have to edit the variable dotspacemacs-themes in the .spacemacs
�le.

8

;; List of themes, the first of the list is loaded when spacemacs starts.

;; Press <SPC> T n to cycle to the next theme in the list (works great

;; with 2 themes variants, one dark and one light)

dotspacemacs-themes '(leuven

tangotango

spacemacs-dark

spacemacs-light)

2.3.3 Send to ansi-term

The old inti.el was replaced by the .spacemacs. I have to make necessary
changes here to control the ansi-term.
For this purpose the function dotspacemacs/user-con�g is extended.

;;;; Send region and line to ansi-term

;; https://emacs.stackexchange.com/questions/28122/how-to-execute-shell-command-from-editor-window/28126#28126

(defun send-region-to-ansi ()

"If region active, send it to ansi-term buffer."

(interactive)

(if (region-active-p)

(send-region "*ansi-term*" (region-beginning) (region-end))))

;; Meine Erweiterungum Lines zu senden

(defun my-select-current-line ()

"Selects the current line, including the NEXT-LINE char at the end"

(interactive)

(move-beginning-of-line nil)

(set-mark-command nil)

(move-end-of-line 2)

(move-beginning-of-line nil)

(setq deactivate-mark nil))

(defun send-line-to-ansi ()

"If region active, send it to ansi-term buffer."

(interactive)

(my-select-current-line)

(if (region-active-p)

(send-region "*ansi-term*" (region-beginning) (region-end)))

9

(deactivate-mark 1))

;; das funktioniert sehr gut. Binden auf F8

(global-set-key [f5] 'send-line-to-ansi)

(global-set-key [f6] 'send-region-to-ansi)

(global-set-key [f7] 'other-window)

(global-set-key (kbd "C-n") 'other-window)

;; In ansi-term toggle between char run/line run mode.

;;http://joelmccracken.github.io/entries/switching-between-term-mode-and-line-mode-in-emacs-term/

(defun jnm/term-toggle-mode ()

"Toggles term between line mode and char mode"

(interactive)

(if (term-in-line-mode)

(term-char-mode)

(term-line-mode)))

(global-set-key [f8] 'jnm/term-toggle-mode)

;; Moving Lines, from http://emacsredux.com/blog/2013/04/02/move-current-line-up-or-down/

;; Transpose function for lines

(defun move-line-up ()

"Move up the current line."

(interactive)

(transpose-lines 1)

(forward-line -2)

(indent-according-to-mode))

(defun move-line-down ()

"Move down the current line."

(interactive)

(forward-line 1)

(transpose-lines 1)

(forward-line -1)

(indent-according-to-mode))

;; Diese Kürzel kollidieren nicht mit org-mode

(define-key input-decode-map "\e[1;5A" [C-up])

(define-key input-decode-map "\e[1;5B" [C-down])

10

(global-set-key [(C-up)] 'move-line-up)

(global-set-key [(C-down)] 'move-line-down)

Now commands can be executed directly in an ansi-term.
Test:

F5 send line to ansi-term
F6 send region to ansi-term
F7 othe window (C-x o)
F8 toggle char run/line run mode

ls -la

pwd

whoami

date

2.3.4 Con�gure Flyspell.

Flyspell already works. I want to switch the dictionary to German.
For this purpose it must be installed �rst. In Ubuntu this is done via the
package manager.
But I would rather use hunspell and install it together with the dictionary.
Hints for dictionaries can be found at Ubuntu: https://wiki.ubuntuusers.de/Rechtschreibkorrektur/#Woerterb%C3%BCcher

load aspell Dictionary

sudo apt-get install aspell-en

Install Hunspell.

sudo apt-get install hunspell

sudo apt-get install hunspell-en

sudo apt-get install hunspell-en-en-frami

which hunspell # /usr/bin/hunspell

M-x ispell-change-dictionray select german.
M-x customize-variablebe ispell-dictionary Select sting and enter english.
M-x customize-variablebe ispell-program-name entry: /usr/bin/hunspell

11

https://wiki.ubuntuusers.de/Rechtschreibkorrektur/#Woerterb%C3%BCcher

Test: Which program is used?
The entry is in the message bu�er:

Starting new Ispell process /usr/bin/hunspell with deutsch dictionary...

Saving file /home/lubuntu/org/live-scripting/.spacemacs...

2.3.5 Magit Authentication ATTACH

I want to be able to write from Magit to Github without having to enter the
password again.
This can be done with SSH keys in three steps.

� 1. create SSH key pair.

� 2. Create ssh con�g �le.

� 3. register public key in GitHub.

Check for keys.

cd ~

ls -la .ssh

Generate key

mkdir .ssh

cd ~/.ssh

ssh-keygen -t rsa -b 4096 -C "lubuntu.mac@live-scripting.de"

id_rsa_github

Empty Passpharse 2x RET

ls -la

create config file

cat << EOF > ~/.ssh/config

Host github.com

IdentitiesOnly yes

IdentityFile ~/.ssh/id_rsa_github

12

EOF

cat ~/.ssh/config

Copy the public Key to github via web gui

cat ~/.ssh/id_rsa_github.pub

Prepare projects

cat ~/.ssh/id_rsa_github.pub

cd ~/org/live-scripting

git remote set-url origin ssh://git@github.com/andreaswittmann/live-scripting

git remote -v

cd ~/org/aw-org-html-themes

git remote set-url origin ssh://git@github.com/andreaswittmann/aw-org-html-themes

git remote -v

git push

cd /var/www/html/orgweb/

git remote -v

git remote set-url origin ssh://git@github.com/andreaswittmann/orgweb

Check git operations

git pull -v

git push -v

The following �gure shows how to add the public key to the GitHub
project in order to access it with SSH.

2.3.6 Con�guration of org-download ATTACH

org-download is an Emacs package which allows to add images to an org �le
by drag and drop.
GitHub: https://github.com/abo-abo/org-download

Org-Download o�ers two methods for saving the �les. I want to use the
Org-Attachment mechanism.
For this purpose the variable org-download-method has to be adapted via
customization.

13

https://github.com/abo-abo/org-download

Figure 3: Add public key to GitHub project.

2020-06-2117− 52− 542020− 06− 2117− 51− 44.png

2.3.7 Install Adobe Font Source Code Pro

This is the default font for Spacemacs.
There is a manual available at: https://gist.github.com/enzinier/8d00d3f37d2e23985dcfa65662d163fa

#!/bin/sh

Userland mode (~$USER/), (~/).

~/.fonts is now deprecated and that

#FONT_HOME=~/.fonts

~/.local/share/fonts should be used instead

cd

FONT_HOME=~/.local/share/fonts

echo "installing fonts at $PWD to $FONT_HOME"

#mkdir -p "$FONT_HOME/adobe-fonts/source-code-pro"

f

ind "$FONT_HOME" -iname '*.ttf' -exec echo '{}' \;

14

2020-06-21_17-52-54_2020-06-21_17-51-44.png
https://gist.github.com/enzinier/8d00d3f37d2e23985dcfa65662d163fa

(git clone \

--branch release \

--depth 1 \

'https://github.com/adobe-fonts/source-code-pro.git' \

"$FONT_HOME/adobe-fonts/source-code-pro" && \

fc-cache -f -v "$FONT_HOME/adobe-fonts/source-code-pro")

Die Fonts liegen jetzt unter ~/.local/share/fonts/adobe-fonts/source-code-pro

The font used can be checked with : M-x describe-font
This is too small for me. Therefore I use 15pt. This is set in .spacemacs
using the variable dotspacemacs-default-font.

;; Default font, or prioritized list of fonts. `powerline-scale' allows to

;; quickly tweak the mode-line size to make separators look not too crappy.

dotspacemacs-default-font '("Source Code Pro"

:size 15

:weight normal

:width normal

:powerline-scale 1.1)

2.3.8 Set up SpeedKeys.

There is a module called org-speed-commands, sometimes also called speed-
keys, which can be used to navigate an org-structure much faster.
To use it, the variable org-use-speed-commands must be set to non-nil
via M-x customize-variable.
Weblinks:

Stack Exchange key bindings - how to use org-mode speed commands
(speed keys)? - Emacs Stack Exchange

Blog scratch Org Speed Keys | scratch

Display Speed Commands Key Binings:

Cursor on first star of an org heading + ?

15

https://emacs.stackexchange.com/questions/33310/how-to-use-org-mode-speed-commands-speed-keys
https://emacs.stackexchange.com/questions/33310/how-to-use-org-mode-speed-commands-speed-keys
http://notesyoujustmightwanttosave.blogspot.com/2011/12/org-speed-keys.html

3 Create Static Website

In this chapter I want to show how to create a static website from the org-
mode �les. I will use the org-publish feature which converts org-�les to html.
Initially I publish to a local web server and then sync the site to the internet.

3.1 Create local website.

I would like to create a website from the project that runs on a local web
server.
It is a static website that can later be replicated on a web server on the
Internet.

3.1.1 Installation of nginx

I use the nginx web server, there is an installation package of Ubuntu.
There is a manual at: nginx on ubuntu

Install nginx

sudo apt-get update

sudo apt-get install nginx

Y

start nginx

sudo /etc/init.d/nginx start

sudo /etc/init.d/nginx status

sudo /etc/init.d/nginx stop

show web root

ls -la /var/www/html/index.nginx-debian.html

setup a simple website:

sudo mkdir -p /var/www/html/simple

sudo mkdir -p /var/www/html/simple

cd /var/www/html/simple

ls -la

sudo chown lubuntu .

cat << EOF > /var/www/html/simple/index.html

<html>

16

https://mediatemple.net/community/products/developer/204405534/install-nginx-on-ubuntu

<body>

<h1>Welcome to simple Web!</h1>

<p>If you see this page, Simple Web ist running.</p>

</body>

</html>

EOF

cat index.html

get local ip address in lan

ip a #http://10.211.55.8/

URL for testing: http://localhost/
URL for testing: http://localhost/index.nginx-debian.html
URL for testing: http://localhost/simple/index.html
URL on the LAN: http://10.211.55.8/
Okay.

3.1.2 Setting up org-publish

With org-publish a website can be created.
First of all I create the directory for the webroot and assign permissions to
be able to work as user lubuntu.

Clean up

sudo rm -rf /var/www/html/orgweb/

sudo rm -rf /var/www/html/

#*******

create directoy for project live-scripting

sudo mkdir -p /var/www/html/orgweb

nginx worker and lubuntu must have access

sudo chown lubuntu /var/www/html/orgweb/

cd /var/www/html/orgweb

ls -la

Force regenerating the project

rm -r /var/www/html/orgweb/*

17

http://localhost/
http://localhost/index.nginx-debian.html
http://localhost/simple/index.html
http://10.211.55.8/

ls -la /var/www/html/orgweb

find /var/www/html/orgweb

cd ~/org/

find . -exec touch {} \;

Now I need the con�guration in an alist variable. This con�guration de-
scribes the publishing process.

;; Eval with C-x C-e at end of line

;; Publisch with M-x org-publish-project RET org RET

(require 'ox-publish)

(setq org-publish-project-alist

'(

;; ... add all the components here (see below)...

("orgxxx" :components ("org-notes" "org-static"))

("org-notes"

:base-directory "~/org/live-scripting/"

:base-extension "org"

:publishing-directory "/var/www/html/live-scripting"

;;:exclude ".*"

;;:include ["foobar.org"]

:recursive t

:publishing-function org-html-publish-to-html

:headline-levels 4 ; Just the default for this project.

:auto-preamble t

:auto-sitemap t ; Generate sitemap.org automagically...

:sitemap-filename "sitemap.org" ; ... call it sitemap.org (it's the default)...

:sitemap-title "Sitemap" ; ... with title 'Sitemap'.

)

("org-static"

:base-directory "~/org/live-scripting/"

:base-extension "css\\|js\\|png\\|jpg\\|jpeg\\|gif\\|pdf\\|txt\\|mp3\\|ogg\\|swf"

18

:exclude ".git\\|LICENSE"

:publishing-directory "/var/www/html/live-scripting/"

:recursive t

:publishing-function org-publish-attachment

)

))

The Publish process is called with : M-x org-publish-project

Then in the next step one of the projects con�gured in alist can be selected.

This will produce the site with the html page:
http://localhost/live-scripting/live-scripting.html

Test URL: http://localhost/live-scripting/sitemap.html
Test URL: http://localhost/live-scripting/live-scripting.html

3.1.3 Load con�guration for org-publish from external �le.

I want to save the con�guration to an external �le and load it on Emacs
startup.
To do this I create the �le publish-project.el and load it into .spacemacs:

;; Load the configuration for org-publish

(load-file "~/org/live-scripting/publish-project.el")

Okay.

3.1.4 Attachments and images

File attachments and images can be dragged and dropped directly into the
org �le. The module org-download then takes care that these �les are em-
bedded and stored in the folder images. Images are displayed inline, a link
is generated for �les other and images.
These �les are also copied by org-publish to the website.

19

http://localhost/live-scripting/live-scripting.html
http://localhost/live-scripting/sitemap.html
http://localhost/live-scripting/live-scripting.html

Example of an embedded image:
(setq org-image-actual-width nil)

Figure 4: Embedded image �le

Beispiel für eine eingebettete PDF Datei:

3.1.5 Problem: Some images are not displayed.

Some images are not displayed in the generated website.

1. Analysis There are �les under the web root that belong to the user
lubuntu and have no read permission for others. The nginx worker

20

images/Installation_unter_lubuntu/2020-06-24_11-21-33_banana.jpeg

Org-Mode Reference Card (1/2)
(for version 9.1.9)

Getting Started

To read the on-line documentation try M-x org-info

Visibility Cycling

rotate current subtree between states TAB
rotate entire buffer between states S-TAB
restore property-dependent startup visibility C-u C-u TAB
show the whole file, including drawers C-u C-u C-u TAB
reveal context around point C-c C-r

Motion

next/previous heading C-c C-n/p
next/previous heading, same level C-c C-f/b
backward to higher level heading C-c C-u
jump to another place in document C-c C-j
previous/next plain list item S-UP/DOWN [2]

Structure Editing

insert new heading/item at current level M-RET
insert new heading after subtree C-RET
insert new TODO entry/checkbox item M-S-RET
insert TODO entry/ckbx after subtree C-S-RET
turn (head)line into item, cycle item type C-c -
turn item/line into headline C-c *
promote/demote heading M-LEFT/RIGHT
promote/demote current subtree M-S-LEFT/RIGHT
move subtree/list item up/down M-UP/DOWN
move the line at point up/down M-S-UP/DOWN
sort subtree/region/plain-list C-c ^
clone a subtree C-c C-x c
copy visible parts of the region C-c C-x v
kill/copy subtree C-c C-x C-w/M-w
yank subtree C-c C-x C-y or C-y
narrow buffer to subtree / widen C-x n s/w

Capture - Refile - Archiving

capture a new item (C-u C-u = goto last) C-c c [1]

refile subtree (C-u C-u = goto last) C-c C-w
archive subtree using the default command C-c C-x C-a
move subtree to archive file C-c C-x C-s
toggle ARCHIVE tag / to ARCHIVE sibling C-c C-x a/A
force cycling of an ARCHIVEd tree C-TAB

Filtering and Sparse Trees

construct a sparse tree by various criteria C-c /
view TODO’s in sparse tree C-c / t/T
global TODO list in agenda mode C-c a t [1]

Tables

Creating a table

just start typing, e.g. |Name|Phone|Age RET |- TAB
convert region to table C-c |
... separator at least 3 spaces C-3 C-c |

Commands available inside tables

The following commands work when the cursor is inside a table.
Outside of tables, the same keys may have other functionality.

Re-aligning and field motion

re-align the table without moving the cursor C-c C-c
re-align the table, move to next field TAB
move to previous field S-TAB
re-align the table, move to next row RET
move to beginning/end of field M-a/e

Row and column editing

move the current column left M-LEFT/RIGHT
kill the current column M-S-LEFT
insert new column to left of cursor position M-S-RIGHT

move the current row up/down M-UP/DOWN
kill the current row or horizontal line M-S-UP
insert new row above the current row M-S-DOWN
insert hline below (C-u : above) current row C-c -
insert hline and move to line below it C-c RET
sort lines in region C-c ^

Regions

cut/copy/paste rectangular region C-c C-x C-w/M-w/C-y

Miscellaneous

to limit column width to N characters, use ...| <N> |...
edit the current field in a separate window C-c ‘
make current field fully visible C-u TAB
export as tab-separated file M-x org-table-export
import tab-separated file M-x org-table-import
sum numbers in current column/rectangle C-c +

Tables created with the table.el package

insert a new table.el table C-c ~
recognize existing table.el table C-c C-c
convert table (Org-mode ↔ table.el) C-c ~

Spreadsheet

Formulas typed in field are executed by TAB, RET and C-c C-c.
= introduces a column formula, := a field formula.

Example: Add Col1 and Col2 |=$1+$2 |
... with printf format specification |=$1+$2;%.2f|
... with constants from constants.el |=$1/$c/$cm |
sum from 2nd to 3rd hline |:=vsum(@II..@III)|
apply current column formula | = |

set and eval column formula C-c =
set and eval field formula C-u C-c =
re-apply all stored equations to current line C-c *
re-apply all stored equations to entire table C-u C-c *
iterate table to stability C-u C-u C-c *
rotate calculation mark through # * ! ˆ $ C-#
show line, column, formula reference C-c ?
toggle grid / debugger C-c }/{

Formula Editor

edit formulas in separate buffer C-c ’
exit and install new formulas C-c C-c
exit, install, and apply new formulas C-u C-c C-c
abort C-c C-q
toggle reference style C-c C-r
pretty-print Lisp formula TAB
complete Lisp symbol M-TAB
shift reference point S-cursor
shift test line for column references M-up/down
scroll the window showing the table M-S-up/down
toggle table coordinate grid C-c }

Links

globally store link to the current location C-c l [1]

insert a link (TAB completes stored links) C-c C-l
insert file link with file name completion C-u C-c C-l
edit (also hidden part of) link at point C-c C-l

open file links in emacs C-c C-o
...force open in emacs/other window C-u C-c C-o
open link at point mouse-1/2
...force open in emacs/other window mouse-3
record a position in mark ring C-c %
jump back to last followed link(s) C-c &
find next link C-c C-x C-n
find previous link C-c C-x C-p
edit code snippet of file at point C-c ’
toggle inline display of linked images C-c C-x C-v

Working with Code (Babel)

execute code block at point C-c C-c
open results of code block at point C-c C-o
check code block at point for errors C-c C-v c
insert a header argument with completion C-c C-v j
view expanded body of code block at point C-c C-v v
view information about code block at point C-c C-v I
go to named code block C-c C-v g
go to named result C-c C-v r
go to the head of the current code block C-c C-v u
go to the next code block C-c C-v n
go to the previous code block C-c C-v p
demarcate a code block C-c C-v d
execute the next key sequence in the code
edit buffer

C-c C-v x

execute all code blocks in current buffer C-c C-v b
execute all code blocks in current subtree C-c C-v s
tangle code blocks in current file C-c C-v t
tangle code blocks in supplied file C-c C-v f
ingest all code blocks in supplied file into the
Library of Babel

C-c C-v i

switch to the session of the current code block C-c C-v z
load the current code block into a session C-c C-v l
view sha1 hash of the current code block C-c C-v a

Completion

In-buffer completion completes TODO keywords at headline
start, TeX macros after “\”, option keywords after “#-”, TAGS
after “:”, and dictionary words elsewhere.

complete word at point M-TAB

Figure 5: Eingebettete PDF Datei.

process belongs to www-data and cannot read these �les.
These are some image �les I dragged and dropped from Firefox to org-
mode.

2. Solution I search these �les and set the permissions.
Afterwards the website must be regenerated with org-publish.

Handle Permissions.

cd ~/org/live-scripting

Find files that don't have read permission for others.

find images -user lubuntu \! -perm -o+r -type f -exec ls -l {} \;

find images -user lubuntu \! -perm -o+r -type f -exec touch {} \;

Add read permission for other

find images -user lubuntu \! -perm -o+r -type f -exec chmod o+r {} \;

3.1.6 HTML Style Readtheorg

There is a very good CSS based style sheet framework for org �les.
See: https://github.com/fniessen/org-html-themes

21

https://github.com/fniessen/org-html-themes

I want to use the ReadTheOrg theme and install it locally.

Clean update

cd

rm -rf ~/org/org-html-themes

Clone the Project

cd org

git clone https://github.com/fniessen/org-html-themes.git

find~/org/org-html-themes

###

To use the themes, the directory styles must be copied to the website.
For this I extend the con�guration in publish-project.el

("org-themes"

:base directory "~/org/org-html-themes/styles"

:base-extension "css\\|js\\|png\\|jpg\\|jpeg\\|gif\\|pdf\\|txt\\|mp3\\|ogg\\|swf"

:exclude ".git\\\|LICENSE"

:publishing-directory "/var/www/html/live-scripting/styles"

:recursive t

:publishing-function org-publish-attachment

)

The theme is applied by the following directive SETUPFILE at the be-
ginning of the org �le:

#+SETUPFILE: ~/org/org-html-themes/setup/theme-readtheorg-local.setup

#+Options: \n:t

#+Title: live-scripting

With calling org-publish the style-sheet is now used in this �le.

3.2 Multi-Project Website

I want to create a website that spans multiple git projects.
This website will be created and updated with a single command. It uses
the recursive feature org org-publish.
It is implemented in publish-project.el in the orgweb de�nition.

22

3.2.1 Creating the fork of org-html-themes

I have used the GitHub project org-html-themes for applying style sheets to
my local website. Now I want to fork this project. I can then make local
modi�cations to the themes. I also want to integrate it into my local website.
I use the GitHub GUI on the web to fork and rename the project to aw-org-
html-themes: https://github.com/andreaswittmann/aw-org-html-themes
I make a local clone of the project.

Clean update

cd

rm -rf ~/org/aw-org-html-themes

Clone the Project

cd org

git clone https://github.com/andreaswittmann/aw-org-html-themes.git

find ~/org/aw-org-html-themes

###

3.2.2 Using styles of the forked project.

Now I want to use my fork aw-org-html-themes. I have to change the direc-
tive SETUPFILE in all org-�les and the base-directory path for the compo-
nent orgweb-themes in publish-project.el.

#+SETUPFILE: ~/org/aw-org-html-themes/setup/theme-readtheorg-local.setup

#+Options: \n:t

#+Title: live-scripting

3.2.3 Problem: the folder "style" is not found by the html �les.

The publish process does not respect the folder structure. It expects a style
folder on the same directory level. The solution must take into account the
option to replicate the static website to a server on the internet.

I write the emacs-lisp function "�xStyleFolder". It is called by :completion-
function. It gets the projectPropertyList as an argument. This list con-
tains the publishingDirectory. The function will call the shell script �xStyle-
Folder.sh that which creates symbolic links in all sub folders.

23

https://github.com/andreaswittmann/aw-org-html-themes

;; Example for projectPropertyList

(:base-directory ~/org/aw-org-html-themes/styles :base-extension css\|js\|png\|jpg\|jpeg\|gif\|pdf\|txt\|mp3\|ogg\|swf :exclude .git\|LICENSE :publishing-directory /var/www/html/orgweb/styles :completion-function myFunction :recursive t :publishing-function org-publish-attachment)

The emacs-lisp function �xStyleFolder is contained in the �le publish-
project.sh.
The shell script is located at ~/org/live-scripting/bin/�xStyleFolder.sh

3.2.4 Updating the orgweb site

The orgweb site can be updated with org-publish.

Emacs Command Description

M-x org-publish-project RET orgweb RET Create or Update all components of orgweb.

Cleaning up and recreating everything.

Force regenerating the project

Delete Webroot

rm -r /var/www/html/orgweb/*

ls -la /var/www/html/orgweb

touch all org files.

cd ~/org/

find . -exec touch {} \;

use org-publish-project to recreate all.

check

find /var/www/html/orgweb/

This recreates the website with all attachments.

3.3 Publish to github pages.

(Don't do it! Read the conclusion)
I want to publish the static website orgweb to github pages.
There are di�erent approaches explained on: https://help.github.com/

en/github/working-with-github-pages

24

https://help.github.com/en/github/working-with-github-pages
https://help.github.com/en/github/working-with-github-pages

3.3.1 Publish to docs folder

I create docs directory and copy the site there. Then I commit and push it
with magit.

Creating a link.

cd ~/org/live-scripting

rm -rf ~/org/live-scripting/docs

mkdir -p ~/org/live-scripting/docs

cd ~/org/live-scripting/docs

cp -r /var/www/html/orgweb/* .

ls -la

find .

create index.html from sitmap.html

cp sitemap.html index.html

remove all symlinks, they are external and break github pages.

cd ~/org/live-scripting/docs

find . -type l

find . -type l -exec rm {} \;

create symlinks manually

cd ~/org/live-scripting/docs/live-scripting

ls -la

ln -s ../styles styles

Ok, this works.
The site is online at: https://andreaswittmann.github.io/live-scripting/
sitemap.html

The site is online at: https://andreaswittmann.github.io/live-scripting/
live-scripting/live-scripting.html

The style sheet is loaded. The PDF attachments are available as well.

Summary:

It is possible to publish the project to the docs folder in Github, thus demon-
strating the capability of org-publish to create a static web site, including
style sheets and attachments. However there are some aspects that I don't

25

https://andreaswittmann.github.io/live-scripting/sitemap.html
https://andreaswittmann.github.io/live-scripting/sitemap.html
https://andreaswittmann.github.io/live-scripting/live-scripting/live-scripting.html
https://andreaswittmann.github.io/live-scripting/live-scripting/live-scripting.html

like. First, since this is a multi-project website, the publish site shouldn't re-
ally be inside the project live-scripting but be a project on it's own. Second,
I don't like the idea of copying the project from the publish site to the docs
directory, thus duplicating all �les. This was necessary because git doesn't
follow symbolic link.

3.3.2 Publish to a project

In this approach the published website becomes it's own GitHub project.

1. Activities There are the following activities:

� Create new GitHub Project orgweb.

� Clone orgweb to local publish site.

� Insert public key on GitHub to push without password

� Use org-publish to create the project.

� Use Magit to publish site to GitHub

� Write script to automatically commit on push on every org-publish

� Update FixStyleFolder to use relative links.

That's it.

2. GitHub Project orgweb.

Clean up and clone Website.

sudo rm -rf /var/www/html/orgweb/

cd /var/www/html/

ls -la

26

sudo git clone https://github.com/andreaswittmann/orgweb.git

sudo chown -R lubuntu:lubuntu /var/www/html/orgweb/

cd /var/www/html/orgweb/

Fix symbolic links

find . -type l

one level

cd /var/www/html/orgweb/./styles/

cd /var/www/html/orgweb/./live-scripting/

rm styles

ln -s ../styles styles

ls -la

ls styles

two levels

cd /var/www/html/orgweb/./aw-org-html-themes/demo/

cd /var/www/html/orgweb/./aw-org-html-themes/styles/

cd /var/www/html/orgweb/./live-scripting/moreorg/

rm styles

ln -s ../../styles styles

ls -la

ls styles

three levels

cd /var/www/html/orgweb/./aw-org-html-themes/styles/readtheorg

rm styles

ln -s ../../../styles styles

ls -la

The site can be found at: https://andreaswittmann.github.io/

orgweb/sitemap.html

An update of the site includes three steps:

(a) org-publish orgweb

27

https://andreaswittmann.github.io/orgweb/sitemap.html
https://andreaswittmann.github.io/orgweb/sitemap.html

(b) magit or git: add and commit �les in project orgweb

(c) git push project orgweb.

(a) Troubleshooting After pushing the project orgweb, GitHub starts
a jykell Process to publish the site.
This my lead to an error, send via email. Unfortunately the mes-
sage very often is just useless like this.
There are no additional information.

Error: The page build failed for the `master` branch with the following error:

3. Rebuilding the website.

These are the steps to rebuild the website completely

cd /var/www/html/orgweb/

find all generated files and remove them, exclude .git

find . -maxdepth 1 ! -name .git ! -name README.md

find . -maxdepth 1 ! -name .git ! -name README.md -exec rm -rf {} \;

ll

removing files

git add .

git status

git commit -m "Resetting project"

git push

touch all file to qualify for regenerating the web

cd ~/org

ll

find . ! -name sitemap.org -exec touch {} \;

regenerate web in emacs with org-publish-project orgweb

28

3.3.3 Conclusion

While it looks tempting to publish to github pages I have to advice against
it.
I managed to publish the website orgweb several times but also often ran
into errors.
The information provided to resolve the errors is not su�cient. This results
in frustrating and time consuming analysis sessions. It is a waste of time.
The Pages feature in github up to now [2020-06-30 Di] is not mature enough
to be used in real world projects!
Other publishing options like web servers or Amazon S3 will be explored.

3.4 Publish to Amazon S3

Amazon S3 is a storage service that includes basic webserver capabilities. It
can host static websites, but doesn't not allow for https and authentication.
This is �ne for this project.

3.4.1 Installation of aws-cli and bucket creation

I need the the command line client from aws to access s3 buckets. I want to
install aws-cli version 2.
I follow instructions from https://docs.aws.amazon.com/de_de/cli/latest/

userguide/install-cliv2-linux.html

mkdir ~/Downloads/aws-cli

cd ~/Downloads/aws-cli

ls -la

we need curl

sudo apt install curl

install aws-cli

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

aws --version

aws-cli/2.0.27 Python/3.7.3 Linux/5.3.0-61-generic botocore/2.0.0dev31

29

https://docs.aws.amazon.com/de_de/cli/latest/userguide/install-cliv2-linux.html
https://docs.aws.amazon.com/de_de/cli/latest/userguide/install-cliv2-linux.html

install profile and credentials for aws

cat ~/.aws/config

cat ~/.aws/credentials

Test s3 access

export AWS_PROFILE=anwi-gmbh

aws s3 ls

Creating a buckets, prepare website hosting on aws gui in the browser

aws s3 mb s3://live-scripting

aws s3 ls s3://live-scripting --recursive

#aws s3 rm s3://live-scripting --recursive

Ok, now access s3 via the aws cli works.

3.4.2 Cleanup and Create Website

The following code deletes the local Website, touches all �le in the org folder
and recreates the local website.
It then syncs to S3.

Delete Website on Bucket

mkdir ~/temp

cd ~/temp

cp /var/www/html/orgweb/sitemap.html .

ls -la

aws s3 sync . s3://live-scripting --delete

Delete and create local website.

rm -rf /var/www/html/orgweb/*

find ~/org/ -exec touch {} \;

!!! create website in emacs with org publish !!!

or use script publish.sh.

publish.sh -c publish

Sync website to S3

cd /var/www/html/orgweb

30

ls -la

aws s3 sync /var/www/html/orgweb s3://live-scripting/orgweb --delete

The website is available at http://live-scripting.s3-website.eu-central-1.
amazonaws.com/sitemap.html

3.4.3 Create a bucket policy

The bucket has to be made available for public access. I follow the aws in-
structions: https://docs.aws.amazon.com/de_de/AmazonS3/latest/dev/
WebsiteAccessPermissionsReqd.html

I use the aws management console.
During the process I create the following bucket policy.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "PublicReadGetObject",

"Effect": "Allow",

"Principal": "*",

"Action": [

"s3:GetObject"

],

"Resource": [

"arn:aws:s3:::live-scripting/*"

]

}

]

}

Ok, this gives public access to the website.

1. Troubleshooting symlinks. Problem: on the second run of �xStyle-
Folder.sh the link /var/www/html/orgweb/styles/styles is created but
shouldn't
Analysis: This happens only on the second run of the script.

31

http://live-scripting.s3-website.eu-central-1.amazonaws.com/sitemap.html
http://live-scripting.s3-website.eu-central-1.amazonaws.com/sitemap.html
https://docs.aws.amazon.com/de_de/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/de_de/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html

It also happens in subsequent identical calls to ln
I don't know why this happens.
Solution: Instead of using symlinks I replicate the styles folder using
rsync.
On the one hand this approach produces redundant �les. On the other,
it works stable and allows to use the same solution for local and remote
websites.

run script

##---

~/org/live-scripting/bin/fixStyleFolder.sh -c mycopy -d /var/www/html/orgweb/styles -L DEBUG

~/org/live-scripting/bin/fixStyleFolder.sh -c mycopy -d /var/www/html/orgweb/styles

cp -R ~/org/aw-org-html-themes/styles /var/www/html/orgweb

test rsync

export WEB_ROOT=/var/www/html/orgweb

export SOURCE_DIR=/var/www/html/orgweb/styles

#export TARGET_DIR=/var/www/html/orgweb/styles

export TARGET_DIR=/var/www/html/orgweb/live-scripting

test rsync

rsync -av --dry-run --delete $SOURCE_DIR $TARGET_DIR

rsync -av --delete $SOURCE_DIR $TARGET_DIR

ls -la $TARGET_DIR

find $TARGET_DIR/styles

rm -rf $TARGET_DIR/styles

find $WEB_ROOT -name "styles"

find $WEB_ROOT -name "styles" -exec rm -rf {} \;

check resuclt

cd /var/www/html/orgweb/styles/

find /var/www/html/orgweb/ -type l -exec rm {} \;

find /var/www/html/orgweb/ -type l

find /var/www/html/orgweb/ -type d

executing ln two times produes error

cd /var/www/html/orgweb/aw-org-html-themes/demo

32

pwd /var/www/html/orgweb/aw-org-html-themes/demo

ls -la

ln -s ../../styles styles

mkdir -p /var/www/html/orgweb/aw-org-html-themes/foobar

cd /var/www/html/orgweb/aw-org-html-themes/foobar

ls -la

ln -s ../../styles styles

Test URL: http://localhost/orgweb/sitemap.html

3.5 Automation of Publishing Process

This includes following steps:

1. Publish to local website.

2. Update lunr search index.

3. Sync to public website on S3.

3.5.1 Publishing with script publish.sh

The �rst task involves running emacs in batch mode and executing org-
publish.
Then I will use the awscli to sync the website to S3.
These steps will be implemented in the script ~/org/live-scripting/bin/publish.sh

Publish to local website via script.

~/org/live-scripting/bin/publish.sh -c publish -L DEBUG

If this call complains about a read lock, close emacs and start from a terminal.

extending PATH in .profile

extend path to include custom scripts

export PATH=~/org/live-scripting/bin:${PATH}

33

http://localhost/orgweb/sitemap.html

The publish process can be started with:

publish.sh -c publish

3.5.2 Problem syntax highlighting is poor

The syntax highlighting for the bash source code blocks look poor when us-
ing the script publish.sh.
Analysis:
This is complicated. Puh.
This problem is discussed at https://emacs.stackexchange.com/questions/
31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e

In short, the module responsible for formatting code snippets, htmlize, is con-
�gured di�erently in both situations.
Solution:

1. Set variables in publish-con�g.el:

(setq org-export-with-broken-links t)

(setq org-html-htmlize-output-type 'css)

1. Create syntax.css using "M-x org-html-htmlize-generate-css" in emacs.

2. Edit the setup-�le to load syntax.css

3. Distribute syntax.css together with the other style sheet �les.

The result can be observed in the following sequence of pictures.
The �rst one shows the publishing result from within emacs unsing M-x org-
publish-project.
The second shows the result of publishing in emacs batch mode without
modi�cations of this solution.
The third pictures shows the result of publishing in emacs batch mode with
this solution applied.

34

https://emacs.stackexchange.com/questions/31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e
https://emacs.stackexchange.com/questions/31439/how-to-get-colored-syntax-highlighting-of-code-blocks-in-asynchronous-org-mode-e

Figure 6: Di�erences in syntax highlighting depending on publish method.

Ok. While this solutions solves the problem, more work could be done
to �ne tune the style sheets.

4 Adding Search to the web

An important aspect of documentation is �nding the documented informa-
tion. Once the web grows, full text search is needed. Lunr as a full text
search engine is a good choice. It is based on java script and as it states on
it's website: it shines like solr but not as bright.
Lunr Website

4.1 Lunr Integration

There is a Github project that indexes HTML pages with lunr and cheerio
and makes them searchable with a search page.
Lunr-Index-and-Search-for-Static-Sites This project can be used as reference.
I temporarily clone the project to use some artefacts.

The following diagram helps to explain how everything works together.

I use a lunr working director to generate the search index. Lunr and Cheerio
must be installed here.
I use the �le build_index.js from the github project, copy it to the working
directory and rename it to buid_index_orgweb.js to re�ect that it is modi-
�ed for orgweb. I have to edit it to insert my web root. This javascript �le
uses cheerio to parse all html �les under my web root and creates the index
in a �le lunr_index.js.

35

https://lunrjs.com/
https://github.com/BLE-LTER/Lunr-Index-and-Search-for-Static-Sites
images/Adding_Search_to_the_web/2020-08-14_18-05-28_2020-08-14_18-05-12.png

Figure 7: Directory Layout for Lunr Search in live-scripting

This has to be updates whenever the website is published.

At the web root I use the �les runclient.js and search.html which I copy
from the github project.
The following script block executes everything.

WORKDIR=~/lunr

WEBROOT=/var/www/html/orgweb

create a project directory

mkdir -p $WORKDIR

cd $WORKDIR

ls -la

mkdir $WEBROOT/lunr

cd $WEBROOT/lunr

Install npm

sudo apt install npm

Install lunr

npm update node

36

npm install lunr

npm install cheerio

create a temporary working directory

mkdir ~/lunr_work

cd ~/lunr_work

clone the project with example site

git clone https://github.com/BLE-LTER/Lunr-Index-and-Search-for-Static-Sites.git

cd ~/lunr_work/Lunr-Index-and-Search-for-Static-Sites

copy relevant files

cp build_index.js $WORKDIR/build_index_orgweb.js

cp example_site/search.css $WEBROOT/

cp example_site/search.html $WEBROOT/

cp example_site/lunrclient.js $WEBROOT/

clean up lunr_work

cd

rm -rf ~/lunr_work

Edit costants in build_index_orgweb.js

cd $WORKDIR

ls -la

build the index for the example site and copy to webroot

node build_index_orgweb.js

cp lunr_index.js $WEBROOT

Check index

cd $WEBROOT

ls -la

Take some artefacts under git control

LUNR_FILES=~/org/live-scripting/lunr_files

mkdir $LUNR_FILES

cp $WORKDIR/build_index_orgweb.js $LUNR_FILES

cp $WEBROOT/lunrclient.js $LUNR_FILES

cp $WEBROOT/search.html $LUNR_FILES

check and git

cd $LUNR_FILES

ls -la

git status

37

use magit to add and commit

Now the search page is available at: http://localhost/orgweb/search.
html

And on S3 at: http://live-scripting.s3-website.eu-central-1.amazonaws.
com/search.html

The index creation must be part of the publishing process.
I add it to the script publish.sh.

4.2 Creating an Index Page for the web

I want to have a central index page for orgweb, named index.html, which is
located at the orgweb root.
This page includes the search �eld and the sitemap. I is created from the
�le index.org using org-publish.

copy file to include in git

cp ~/org/index.org ~/org/live-scripting/lunr_files/

cp ~/org/index.org.template ~/org/live-scripting/lunr_files/

ls -la ~/org/live-scripting/lunr_files/

commit and push with magit

4.2.1 Creating the search �eld

The Lunr integration uses the search.html �le. I copy the content to my new
index.org �le using HTML export declarations.
I also need the content from the HTML head element. I can set these in the
index.org using HTML_HEAD declarations.
The �le index.org is located directly under ~/org which is outside any git
project. Therefore a save a copy at ~/org/live-scripting/lunr_�les/ and put
it under git control. On any modi�cation it has to be copied manually.

4.2.2 Creating the sitemap

A sitmap for orgweb is created during the org-publish process. It results in
the �le sitemap.html

38

http://localhost/orgweb/search.html
http://localhost/orgweb/search.html
http://live-scripting.s3-website.eu-central-1.amazonaws.com/search.html
http://live-scripting.s3-website.eu-central-1.amazonaws.com/search.html

I only need the body part form it.
I use perl to cut the relevant lines and paste them at the end of the index.org
�le.
The code is manually developed below.

cd ~/org

ls -la

cat /var/www/html/orgweb/sitemap.html

Cut out relevant part of sitemap.html

explanation of the chained command

cat /var/www/html/orgweb/sitemap.html | \

perl -ne 'print if /<body>/../<\/body>/' | \ # Take only the body part

perl -ne 'print if /<div id=\"content\">/../<\/div>/' | \ # Take only the div blocks

perl -ne 'print if ! ($. <= 2)' | \ # Cut away the first two lines

perl -ne 'print if ! eof' # Cut away the last line

The chained command

cat /var/www/html/orgweb/sitemap.html |\

perl -ne 'print if /<body>/../<\/body>/' |\

perl -ne 'print if /<div id=\"content\">/../<\/div>/' |\

perl -ne 'print if ! ($. <= 2)' |\

perl -ne 'print if ! eof' > /tmp/sitemap.txt

cat /tmp/sitemap.txt

Insert it into index.org

cat ~/org/index.org.template

cp ~/org/index.org.template ~/org/index.org

echo "#+BEGIN_EXPORT html" >> ~/org/index.org

cat /tmp/sitemap.txt >> ~/org/index.org

echo "#+END_EXPORT" >> ~/org/index.org

cat ~/org/index.org

Publish for testing

publish.sh -c publish

This is added to publish.sh and thus automatically updated on every
publish action.

39

This also includes extending publish-project.el to include a single publish
task for index.org.
Since index.org is modi�ed after the website is published, it has to be regen-
erated.
It is also implemented in publish.sh and works �ne.
Ok.

4.2.3 Creating a Home Button

The orgmode HTML exporter de�nes the variables HTML_LINK_HOME
and HTML_LINK_UP. I want to include a "Home-Link" on every HTML
pages that links to the index.html of orgweb.
I need to use a root-relative URL because it must work in orgweb on local-
host and on the S3 hosted site. Therefore it is necessary that the directory
structures in both websites are identical.

#+HTML_LINK_HOME: /orgweb/index.html

#+HTML_LINK_UP: /orgweb/index.html

5 Sharing Options

It is not always possible or wanted to give access to the orgweb to everybody
on the internet. There are multiple Options to share the whole org-web,
single org-�les or only parts of an org-�le. The simplest form is an export
to an ascii �le which is quite readable but omits pictures and attachements.
The most versatile form is a PDF �le which features clickable links and inline
integration of pictures. It is also possible to zip the whole orgweb or parts
of it and send it to the recipient via �le sharing. Furthermore there is an
Markdown export options as well. All these possiblities produce quite good
results out of the box.

40

5.1 ASCII Export

5.2 Markdown Export

5.3 HTML Archive

5.4 PDF Export

The whole org�le or parts of it can be exported to PDF. This is done via
the LATEX exporter.
It's been quite a while since I worked with Latex the last time and I am sur-
prised that it is still used and well supported in 2020. The export to Latex
and PDF works �awless and the result is very usable. However, if you are not
satis�ed with the result, it gets complicated. There are endless ways to tailor
the export process, but that requires deep knowledge of the exporter backend,
Tex and Latex. Some con�gurations can be made via org mode directives
and emacs variables. The org mode documentation describes in detail. It
can be found here: https://orgmode.org/manual/LaTeX-Export.html.
If you need more �exibility, this tutorial on wrog is a good starting point
to understand and modify the export process: https://orgmode.org/worg/
org-tutorials/org-latex-export.html

To export an org mode �le to pdf simply use this command.

M-x org-letex-export-to-pdf

The Latex Class can be controlled with org mode directive.
Choose the latex class: article, report, book.
, #+LATEX_CLASS: report

Here is an example PDF export of this live-scripting.org.

5.5 Problem: PDF creation fails

I get the error message:

LaTeX Error: File `wrapfig.sty' not found.

Analysis:

This problem is discussed at: https://tex.stackexchange.com/questions/

41

https://orgmode.org/manual/LaTeX-Export.html
https://orgmode.org/worg/org-tutorials/org-latex-export.html
https://orgmode.org/worg/org-tutorials/org-latex-export.html
https://tex.stackexchange.com/questions/291531/exporting-org-files-to-latex-error
https://tex.stackexchange.com/questions/291531/exporting-org-files-to-latex-error

291531/exporting-org-files-to-latex-error

Solutions:

I could solve the problem by installing texlive and extra packages.

sudo su

#password

apt-get update

apt-get install texlive

apt-get install texlive-latex-extra

This installs the versions:

texlive newest version (2019.20190710-1).

texlive-latex-extra newest version (2019.20190710-1).

And this solves the problem.

6 Miscellaneous

6.1 Handling large images

Large images can be resized during inline displays and in export to html and
PDF.
We can use modi�er attributes for it.
In the HTML page, the resized image should open to it's full size by clicking
it. This can be achieved by including a html link as the description part in
org-link.
I added the elisp function org-download-link-format-function-aw in the �le
publish-project.el.
By customizing the variable org-download-link-format-function.
The function is a modi�ed version of the default function with alters the
format of the image link.

Here is an example. A large screenshot is included but with speci�ed
width values.
The resulting small picture in the html �le is clickable and opens the picture
�le in full size.

42

https://tex.stackexchange.com/questions/291531/exporting-org-files-to-latex-error
https://tex.stackexchange.com/questions/291531/exporting-org-files-to-latex-error

Figure 8: Screenshot that shows the modi�cations for clickable image links.

In order to use this feature, we need to customize the variable as ex-
plained above.

6.2 Side by Side images using a table.

It is possible to place images side by side, using an orgmode table.
However tables orgmode tables don't support multi-line cells. Thus it is not
possible to enrich it with caption or attributes.

43

images/Installation_unter_lubuntu/2020-07-07_21-36-29_2020-07-07_21-31-11.png

6.3 Displaying folder structures

Folder Structures can be created with the unix tree command.
It can be presented in a source block.

lubuntu@lubuntu-pc:/var/www/html/orgweb/live-scripting/images$ tree

.

Installation_unter_lubuntu

2020-06-24_11-15-55_orgcard.pdf

2020-06-24_11-21-33_banana.jpeg

2020-06-30_10-25-57_2020-06-21_17-34-52_2020-06-21_17-15-37.png

2020-06-30_10-26-47_2020-06-21_17-34-52_2020-06-21_17-15-37.png

2020-07-03_21-03-36_2020-07-03_21-01-27.png

44

images/Test/2020-07-08_08-52-47_1565435.png
images/Test/2020-07-08_08-54-39_banana.jpeg

2020-07-07_21-36-29_2020-07-07_21-31-11.png

Introduction

2020-07-03_22-06-50_2020-07-03_22-05-56.png

Test

2020-07-08_08-52-47_1565435.png

2020-07-08_08-53-30_banana.jpeg

2020-07-08_08-54-39_banana.jpeg

6.4 Handling Sub and Superscript

Orgmode uses the underscore letter to indicate superscript. Most of the time
this is not what I want.
The Variable org-use-sub-superscript can be used to customize this behavior.
I choose the option "only with braces" to enable special format when I want
it. Unfortunately this setting is ignored during the publishing process. As
an alternative I use the directive:

#+OPTIONS: ^:{}

;;possible values are t, nil, {}

This will not be_subscript

This will be_{subscript}

This will not be^superscript

This will be^{superscript}

These lines produce the following result:

This will not be_subscript
This will besubscript
This will not be�superscript
This will besuperscript

Ok.

45

	Introduction
	The Problem
	The live-scripting approach
	Emacs org-mode
	Multi Project Website

	Installation on lubuntu
	Prerequisites
	Basic Live-Scripting
	Spacemacs configuration
	Installation
	Configuring the Default Theme.
	Send to ansi-term
	Configure Flyspell.
	Magit AuthenticationATTACH
	Configuration of org-downloadATTACH
	Install Adobe Font Source Code Pro
	Set up SpeedKeys.

	Create Static Website
	Create local website.
	Installation of nginx
	Setting up org-publish
	Load configuration for org-publish from external file.
	Attachments and images
	Problem: Some images are not displayed.
	HTML Style Readtheorg

	Multi-Project Website
	Creating the fork of org-html-themes
	Using styles of the forked project.
	Problem: the folder "style" is not found by the html files.
	Updating the orgweb site

	Publish to github pages.
	Publish to docs folder
	Publish to a project
	Conclusion

	Publish to Amazon S3
	Installation of aws-cli and bucket creation
	Cleanup and Create Website
	Create a bucket policy

	Automation of Publishing Process
	Publishing with script publish.sh
	Problem syntax highlighting is poor

	Adding Search to the web
	Lunr Integration
	Creating an Index Page for the web
	Creating the search field
	Creating the sitemap
	Creating a Home Button

	Sharing Options
	ASCII Export
	Markdown Export
	HTML Archive
	PDF Export
	Problem: PDF creation fails

	Miscellaneous
	Handling large images
	Side by Side images using a table.
	Displaying folder structures
	Handling Sub and Superscript

